Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

A Novel Dissipative Acoustic Material

2021-08-31
2021-01-1128
Due to modern trends in the automotive industry, such as vehicle electrification, light-weighting, reduced NVH (Noise, Vibration and Harshness) packaging space, etc., it is desirable to have a low profile and light-weight acoustic material with multi-functionality. If one single layer of a thin acoustic material can provide comparable absorption and transmission loss to a multilayer treatment, it will benefit the industry by saving weight, packaging space and system cost. Acoustic absorption and sound transmission loss performance of a new dissipative material at reduced weight and thickness is introduced in this paper. The acoustic performance of the material was evaluated by using random incidence absorption and transmission loss as well as in-vehicle experiment. Further potential applications for this material have been identified using the Statistical Energy Analysis (SEA) method with panel leakage considered.
Journal Article

A Hybrid Acoustic Model for Composite Materials Composed of Fibers and High Surface Area Particles

2021-08-31
2021-01-1127
High surface area particles have drawn attention in the context of noise control due to their good sound absorption performance at low frequencies, which is an advantage compared with more traditional materials. That observation suggests that there is a good potential to use these particles in various scenarios, especially where low frequency noise is the main concern. To facilitate their application, composite materials are formed by dispersing particles within a fiber matrix, thus giving more flexibility in positioning those particles. In this work, a hybrid model that combines a model for limp porous materials and a model of high surface area particles is proposed to describe the acoustic performance of such composites. Two-microphone standing wave tube test results for several types of composites with different thickness, basis weight, and particle concentration are provided.
Technical Paper

Equivalent Material Properties of Multi-Layer, Lightweight, High-Performance Damping Material and Its Performance in Applications

2019-06-05
2019-01-1573
In this study, we investigated two aspects of a multi-layer, lightweight damping treatment. The first aspect studied was an equivalent material property estimate for a simplified finite element (FE) model. The simplified model is needed for computational efficiency, i.e. so that Tier 1 and OEM users can represent this complex, multi-layer treatment as a single, isotropic solid layer plus an aluminum constraining layer. Therefore, the use of this simplified FE model allows the multilayer treatment to be included in large body-in-white structural models. An equivalent material property was identified by first representing three unique layers (two adhesive layers plus a connecting standoff layer) by a single row of isotropic solid elements, then an optimization tool was used to determine the “best fit” for two properties including Young’s modulus and material loss factor.
Technical Paper

Comparison of Long Bar Test Method to Oberst Bar Test Method for Damping Material Evaluation

2017-06-05
2017-01-1851
Several methods for evaluating damping material performance are commonly used, such as Oberst beam test, power injection method and the long bar test. Among these test methods, the Oberst beam test method has been widely used in the automotive industry and elsewhere as a standard method, allowing for slight bar dimension differences. However, questions have arisen as to whether Oberst test results reflect real applications. Therefore, the long bar test method has been introduced and used in the aerospace industry for some time. In addition to the larger size bar in the long bar test, there are a few differences between Oberst (cantilever) and long bar test (center-driven) methods. In this paper, the differences between Oberst and long bar test methods were explored both experimentally and numerically using finite element analysis plus an analytical method. Furthermore, guidelines for a long bar test method are provided.
Technical Paper

Structural Damping by the Use of Fibrous Materials

2015-06-15
2015-01-2239
Because of the increasing concern with vehicle weight, there is an interest in lightweight materials that can serve several functions at once. Here we consider the vibration damping performance provided by an “acoustical” material (i.e., a fibrous layer that would normally be used for airborne noise control). It has been previously established that the vibration of panel structures creates a non-propagating nearfield in the region close to the panel. In that region, there is an oscillatory, incompressible fluid flow parallel to the panel whose strength decays exponentially with distance from the panel. When a fibrous medium is placed close to the panel in the region where the oscillatory nearfield is significant, energy is dissipated by the viscous interaction of the flow and the fibers, and hence the panel vibration is damped. The degree of panel damping is then proportional to the energy removed from the nearfield by the viscous interaction with the fibrous medium.
X