Refine Your Search

Search Results

Author:
Viewing 1 to 8 of 8
Technical Paper

Computational Icing Analysis on NASA’s SIDRM Geometry to Investigate Collection Efficiency

2023-06-15
2023-01-1476
Computational icing analysis results were compared to experimental icing tunnel data including aerothermal (e.g., dry air) and supercooled water droplet rime-ice conditions from tests conducted in early 2022 at the NASA Icing Research Tunnel (IRT). The Simulated Inter-compressor Duct Research Model (SIDRM) test article was used in this study, and its geometry represents the inter-compressor duct region of a turbofan engine. The test article’s purpose is to study the physics of supercooled water icing and ice crystal icing. This study compared three different icing codes: FENSAP-ICE (Eulerian approach), LEWICE3D (Lagrangian approach), and GlennICE (Lagrangian approach). All three icing codes were conducted on SIDRM’s complex body flow-field and compared to different experimental supercooled water rime runs. The test article instrumentation (pressure taps, thermocouples, etc.) and 3D laser scans of final ice shapes were used to compare against the different icing code simulations.
Technical Paper

Icing Physics Studies Using the 3D SIDRM Test Article: Aerodynamic and Supercooled Liquid Icing Analysis

2023-06-15
2023-01-1399
In-flight icing is an important safety issue and is a factor that affects aircraft design and performance. Newer regulations are driving a need for improvements in airframe and engine icing simulation capability. Experimental data is required for development of icing physics models and simulation validation. To that end, this paper presents the analysis of the supercooled liquid icing data subset from tests conducted in 2022 at the NASA Icing Research Tunnel that studied both supercooled water and ice-crystal icing. The test article that was utilized replicated 3D geometrical features of an inter-compressor duct and strut region of a turbofan engine. The surfaces of the Simulated Inter-compressor Duct Research Model (SIDRM) can be heated to simulate the warm surfaces of the turbofan inter-compressor duct.
Technical Paper

Ice-Crystal Icing Accretion Studies at the NASA Propulsion Systems Laboratory

2019-06-10
2019-01-1921
This paper describes an ice-crystal icing experiment conducted at the NASA Propulsion System Laboratory during June 2018. This test produced ice shape data on an airfoil for different test conditions similar to those inside the compressor region of a turbo-fan jet engine. Mixed-phase icing conditions were generated by partially freezing out a water spray using the relative humidity of flow as the primary parameter to control freeze-out. The paper presents the ice shape data and associated conditions which include pressure, velocity, temperature, humidity, total water content, melt ratio, and particle size distribution. The test featured a new instrument traversing system which allowed surveys of the flow and cloud. The purpose of this work was to provide experimental ice shape data and associated conditions to help develop and validate ice-crystal icing accretion models.
Technical Paper

Total Temperature Measurements in Icing Cloud Flows Using a Rearward Facing Probe

2019-06-10
2019-01-1923
This paper reports on temperature and humidity measurements from a series of ice-crystal icing tunnel experiments conducted in June 2018 at the Propulsion Systems Laboratory at the NASA Glenn Research Center. The tests were fundamental in nature and were aimed at investigating the icing processes on a two-dimensional NACA0012 airfoil subjected to artificially generated icing clouds. Prior to the tests on the airfoil, a suite of instruments, including total temperature and humidity probes, were used to characterize the thermodynamic flow and icing cloud conditions of the facility. Two different total temperature probes were used in these tests which included a custom designed rearward facing probe and a commercial self-heating total temperature probe. The rearward facing probe, the main total temperature probe, is being designed to reduce and mitigate the contaminating effects of icing and ingestion of ice crystals and water droplets at the probe’s inlet.
Technical Paper

Analysis of Experimental Ice Accretion Data and Assessment of a Thermodynamic Model during Ice Crystal Icing

2019-06-10
2019-01-2016
This paper analyzes ice crystal icing accretion data and evaluates a thermodynamic ice crystal icing model, which has been previously presented, to describe the possible mechanisms of icing within the core of a turbofan jet engine. The model functions between two distinct ice accretions based on a surface energy balance: freeze-dominated icing and melt-dominated icing. Freeze-dominated icing occurs when liquid water (from melted ice crystals) freezes and accretes on a surface along with the existing ice of the impinging water and ice mass. This freeze-dominated icing is characterized as having strong adhesion to the surface. The amount of ice accretion is partially dictated by a freeze fraction, which is the fraction of impinging liquid water that freezes. Melt-dominated icing occurs as unmelted ice on a surface accumulates. This melt-dominated icing is characterized by weakly bonded surface adhesion.
Journal Article

Development of a Coupled Air and Particle Thermal Model for Engine Icing Test Facilities

2015-06-15
2015-01-2155
This paper describes a numerical model that simulates the thermal interaction between ice particles, water droplets, and the flowing air applicable during icing wind tunnel tests where there is significant phase-change of the cloud. It has been previously observed that test conditions, most notably temperature and humidity, change when the icing cloud is activated. It is hypothesized that the ice particles and water droplets thermally interact with the flowing air causing the air temperature and humidity to change by the time it reaches the test section. Unlike previous models where the air and particles are uncoupled, this model attempts to explain the observed changes in test conditions by coupling the conservation of mass and energy equations. The model is compared to measurements taken during wind tunnel tests simulating ice-crystal and mixed-phase icing that relate to ice accretions within turbofan engines.
Technical Paper

Recent Advances in the LEWICE Icing Model

2015-06-15
2015-01-2094
This paper will describe two recent modifications to the LEWICE software. The version described is under development and not ready for release. First, a capability for modeling ice crystals and mixed phase icing has been modified based on recent experimental data. Modifications have been made to the ice particle bouncing and erosion model. This capability has been added as part of a larger effort to model ice crystal ingestion in aircraft engines. Comparisons have been made to ice crystal ice accretions performed in the NRC Research Altitude Test Facility (RATFac). Second, modifications were made to the runback model based on data and observations from thermal scaling tests performed in the NRC Altitude Icing Tunnel. The runback model was modified to match film models used in the open literature. An empirical water shedding was also implemented. Comparisons were made to thermal deicing data taken at the NRC Altitude Icing Tunnel.
Technical Paper

Ice Accretion Measurements on an Airfoil and Wedge in Mixed-Phase Conditions

2015-06-15
2015-01-2116
This paper presents measurements of ice accretion shape and surface temperature from ice-crystal icing experiments conducted jointly by the National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada. The data comes from experiments performed at NRC's Research Altitude Test Facility (RATFac) in 2012. The measurements are intended to help develop models of the ice-crystal icing phenomenon associated with engine ice-crystal icing. Ice accretion tests were conducted using two different airfoil models (a NACA 0012 and wedge) at different velocities, temperatures, and pressures although only a limited set of permutations were tested. The wedge airfoil had several tests during which its surface was actively cooled. The ice accretion measurements included leading-edge thickness for both airfoils. The wedge and one case from the NACA 0012 model also included 2D cross-section profile shapes.
X