Refine Your Search

Search Results

Author:
Viewing 1 to 8 of 8
Technical Paper

Development of a Test Rig for the Assessment of Remotely Piloted Aircraft Systems (RPAS) in Icing

2023-06-15
2023-01-1416
As the everyday use of flying small to medium size Remotely Piloted Aircraft System (RPAS) continues to evolve, so does the need to fly them in icing environments. To investigate an RPAS’ ability to fly in these conditions, an outdoor test rig has been developed at the National Research Council Canada (NRC) in which a range of RPAS have been tested in icing environments. This rig has an available test area of 3.05 m × 3.05 m, and is 5.1 m high. An array of spray nozzles installed at the top of the test rig provides a cloud that, when operated at sub-zero temperatures, enables simulation of in-flight icing conditions. The spray cloud is calibrated to provide water concentration and drop size distributions consistent with Appendix C, freezing drizzle and freezing rain conditions.
Technical Paper

Airborne Platform for Ice-Accretion and Coatings Tests with Ultrasonic Readings (PICTUR)

2023-06-15
2023-01-1431
Hazardous atmospheric icing conditions occur at sub-zero temperatures when droplets come into contact with aircraft and freeze, degrading aircraft performance and handling, introducing bias into some of the vital measurements needed for aircraft operation (e.g., air speed). Nonetheless, government regulations allow certified aircraft to fly in limited icing environments. The capability of aircraft sensors to identify all hazardous icing environments is limited. To address the current challenges in aircraft icing detection and protection, we present herein a platform designed for in-flight testing of ice protection solutions and icing detection technologies. The recently developed Platform for Ice-accretion and Coatings Tests with Ultrasonic Readings (PICTUR) was evaluated using CFD simulations and installed on the National Research Council Canada (NRC) Convair-580 aircraft that has flown in icing conditions over North East USA, during February 2022.
Technical Paper

Comparability of Hot-Wire Estimates of Liquid Water Content in SLD Conditions

2023-06-15
2023-01-1423
Future compliance to FAA 14 CFR Part 25 and EASA CS-25 Appendix O conditions has required icing wind tunnels to expand their cloud simulation envelope, and demonstrate accurate calibration of liquid water content and droplet particle size distributions under these conditions. This has led to a renewed community interest in the accuracy of these calibrations, and the potential inter-facility bias due to the choice of instrumentation and processing methods. This article provides a comparison of the response of various hot-wire liquid water content instruments under Appendix C and supercooled large droplet conditions, after an independent similar analysis at other wind tunnel facilities. The instruments are being used, or are under consideration for use, by facilities collaborating in the ICE GENESIS program.
Technical Paper

Development of an Icing Test Facility for Rotors and Propellers of Remotely Piloted Aircraft Systems (RPAS)

2023-06-15
2023-01-1420
The development and calibration of a new facility to test medium size rotors for Remotely Piloted Aircraft Systems (RPAS) under in-flight icing conditions is described. This facility has made use of a 3 m x 6 m cold room available at the NRC which includes a spray system to provide the icing cloud as well as a dedicated rotor stand assembly that incorporates a load cell and dynamometer. Calibration data of the spray drop sizes and liquid water content are provided and compared to conditions of the natural environment as detailed in icing regulations for transport category airplanes, i.e., CFR 14 Part 25 Appendix C and O. Data to examine the sensitivity of rotor performance, under a constant liquid water content to various droplet sizes are provided for a medium sized rotor. Tests have also been performed that examine the ability of the rotor to maintain predefined thrust, torque and power performance throughout an icing encounter of fixed duration.
Technical Paper

Liquid Water Content Instrumentation Study at the NRC AIWT

2023-06-15
2023-01-1424
The National Research Council Altitude Icing Wind Tunnel liquid water content calibrations have historically relied on a 2.4 mm diameter rotating cylinder for drop sizes up to 50 μm and a 6.2 mm diameter rotating cylinder for drop sizes from 50 μm to 200 μm. This study compares the facility calibration, derived from rotating cylinder measurements, to water content measurements from the Science Engineering Associates Multi-Element Probe and the National Research Council Compact Iso-Kinetic Probe over a range of airspeeds and drop sizes. The data show where the rotating cylinder measurements may start to underestimate the liquid water content (LWC), possibly due to splashing at higher airspeeds and drop sizes. The data also show that the LWC read by the Multi-Element Probe is higher than that provided by the rotating cylinders, and the Compact Iso-Kinetic Probe (CIKP) reads higher than both other methods.
Technical Paper

Measurement of Liquid Water Content for Supercooled Large Drop Conditions in the NRC’s Altitude Icing Wind Tunnel

2019-06-10
2019-01-2007
As a result of new regulations pertaining to the airworthiness of aircraft exposed to in-flight icing conditions where maximum water drop size is greater than 100 microns (referred to as Supercooled Large Droplet (SLD) conditions), updates are required to the test facilities and simulations that will enable manufactures to certify their products under these new rules. While a number of facilities report achieving some of the conditions specified in the new regulations, questions remain as to the suitability of the instrumentation used to measure the Liquid Water Content (LWC) and drop size distributions of the SLD icing cloud. This study aims to provide baseline LWC data through ice accretion measurement techniques on a NACA 0012 airfoil and rotating cylinders of varying diameters.
Journal Article

Testing of Elastomer Icephobic Coatings in the AIWT: Lessons Learned

2019-06-10
2019-01-1994
A study has been conducted into icephobic properties of some highly durable “off-the-shelf” elastomer materials using a rotating ice adhesion test rig installed in the NRC’s Altitude Icing Wind Tunnel. This enabled the formation of ice at environmental conditions similar to those experienced during in-flight icing encounters. Initially, the tests indicated some very positive results with ice adhesion shear stress as low as 8KPa. On further examination, however, it became apparent that the test preparation process, in which the samples were cleaned with an ethanol alcohol solution, influenced the results due to absorption and prolonged retention of the cleaning fluid. The uptake of the ethanol alcohol solution by the elastomer was found to be a function of the surface temperature and remained absorbed into the coating during the ice accretion process changing the characteristics of the coating in such a way that led to a reduction in the ice/surface bond strength.
Technical Paper

Development of a Supercooled Large Droplet Environment within the NRC Altitude Icing Wind Tunnel

2015-06-15
2015-01-2092
Simulations of supercooled large droplet (SLD) icing environments within the NRC's Altitude Icing Wind Tunnel (AIWT) have been performed in which broad band mass distribution spectra are achieved that include a distinct pattern of liquid water content (LWC) over a range of droplet sizes (i.e., bi-modal distribution). The mass distribution is achieved through modification of the existing spray system of the AIWT to allow two spray profiles with differing LWC and median volumetric diameter (MVD) to be simultaneously injected into the flow. Results of spray profile distributions measured in the test section have demonstrated that freezing drizzle conditions, where MVD is either less than or greater than 40 μm, can be achieved.
X