Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Development of High Performance Coated Gasoline Particulate Filter

2023-04-11
2023-01-0388
In recent years, emission regulations have become stricter as part of the shift toward decarbonization. Particularly in Europe, the PN (Particulate Number) regulation has grown stricter, and further enhancement of PN filtration efficiency of GPF (Gasoline Particulate Filter) is required. However, as PN filtration efficiency is enhanced, pressure drop increases. There is a trade-off between PN filtration efficiency and pressure drop. In particular, coated GPF (cGPF) tends to deteriorate this trade-off relationship compared to uncoated GPF because of the coating of the catalyst. On the other hand, cGPFs have three-way performance, which can reduce the number of catalyst converters in the exhaust system. Therefore, we tried to establish a high performance cGPF by enhancing the trade-off relationship between PN filtration efficiency and pressure drop.
Technical Paper

Development of Low Temperature Active Material for Three Way Catalyst

2016-04-05
2016-01-0932
Engine technologies using efficient combustion and down-sizing turbo have become important in order to reduce automotive CO2 emissions. However, the exhaust gas temperature also becomes lower by these technologies. As a result, the catalyst performance becomes lower. Therefore it is necessary to develop low temperature active catalysts to reduce emissions. This research was focused on Pd/CeO2, and it’s able to oxidize CO at low temperatures. In order to increase the catalyst activity, the addition of some elements to the CeO2 was studied. Zn addition was found to have an advantage to reduce the CO light off temperature by 60 °C. Then, we tried to clarify the cause of improvement. As a result, it made clear that the Zn addition promotes the active oxygen release from the CeO2 surface. However, repeated engine exhaust gas tests indicated a decline in purification performance.
Technical Paper

Development of Low Temperature Active Three Way Catalyst

2019-04-02
2019-01-1293
In recent years, fuel efficiency has been improved by using many technologies such as downsizing engine, turbocharger and direct injection to reduce CO2 emissions from vehicle. However, the temperature of the exhaust gas from the engines using these technologies becomes lower than that form conventional one. That increases the difficulty for three-way catalyst (TWC) to purify CO, HC and NOx enough because TWC is not warmed up just after engine starting. In order to reduce cold emission mentioned above, we have been studying the warmup strategy of which the key property is thermal mass of TWC. To achieve early warmup, thermal mass of TWC is reduced by lightening the weight of (1) substrate and (2) catalytic materials, namely washcoat amount. Along with the strategy, we have developed TWC with lightweight substrate and applied it from the 2016 model year CIVIC.
Technical Paper

Development of Pd-Only Catalyst for LEV III and SULEV30

2015-04-14
2015-01-1003
This research is aimed at development of the catalyst for gasoline automobiles which uses only palladium (Pd) among platinum group metals (PGMs). And the conformity emission category aimed at LEV III-SULEV30. For evaluation, the improvement effect was verified for 2013 model year (MY) ACCORD (LEV II-SULEV) as the reference. As compared with Pd-rhodium (Rh) catalyst, a Pd-only catalyst had the low purification performance of nitrogen oxides (NOx), and there was a problem in the drop in dispersion of Pd by sintering, and phosphorus (P) poisoning.
X