Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Application of Beamforming to Side Mirror Aeroacoustic Noise Optimization

2016-04-05
2016-01-0475
Excessive wind noise is one of the most complained problems by owners of new vehicles as evidenced by JD Power Initial Quality Study (IQS) in recent years. After the vehicle speed surpasses 100 km/h, wind noise is gradually becoming the dominant noise source. In an effort to reduce aeroacoustic noise level, Beamforming (BF) is a very effective noise source identification technique used during vehicle wind noise development phases. In this work, based on the planar BF methodology, a large semi-circle microphone array is designed in accordance with the desired resolution and dynamic range pertaining to actual noise source distribution on a typical passenger vehicle. Acoustic array calibration and mapping deformation correction are accomplished by multi-point source method, and the Doppler Effect due to wind is corrected by the location calibration method.
Technical Paper

Simulation and Optimization of a Low Frequency Vibration Issue for Commercial Truck

2016-04-05
2016-01-0474
A low frequency vibration issue around 3.2 Hz occurs during a commercial heavy truck program development process, and it is linked to extremely uncomfortable driving and riding experiences. This work focuses on an analytical effort to resolve the issue by first building a full vehicle MBS (multi-body-system) model, and then carrying out vibration response analyses. The model validation is performed by using full vehicle testing in terms of structural modes and frequency response characteristics. In order to resolve the issue which is excited by tire non-uniformity, the influence of the cab suspension, frame modes, front leaf spring system and rear tandem suspension is analyzed. The root cause of the issue is found to be the poor isolation of the rear tandem suspension system. The analytical optimization effort establishes the resolution measure for the issue.
Journal Article

Automotive Brake Squeal Simulation and Optimization

2016-04-05
2016-01-1298
This work carries out complex modal analyses and optimizations to resolve an 1800 Hz front brake squeal issue encountered in a vehicle program development phase. The stability theory of complex modes for brake squeal simulation is briefly explained. A brake system finite element model is constructed, and the model is validated by the measurement in accordance with the SAE 2521 procedure. The key parameters for evaluating the stability of the brake system complex modes are determined. The modal contributions of relevant components to unstable modes are analyzed and ranked. Finally, in order to resolve the squeal issue, the design improvements of rotor, caliper and pad are proposed and numerical simulations are carried out. The obtained results demonstrate that the optimized rotor and pad design can alleviate the squeal issue significantly while the optimized clipper design could essentially eliminate the squeal issue.
X