Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Vehicle Surge Reduction Technology during Towing in Parallel HEV Pickup Truck

2022-03-29
2022-01-0613
This paper proposes a technology to reduce vehicle surge during towing that utilizes motors and shifting to help ensure comfort in a parallel HEV pickup truck. Hybridization is one way to reduce fuel consumption and help realize carbon neutrality. Parallel HEVs have advantages in the towing, hauling, and high-load operations often carried out by pickup trucks, compared to other HEV systems. Since the engine, motor, torque converter, and transmission are connected in series in a parallel HEV, vehicle surge may occur when the lockup clutch is engaged to enhance fuel efficiency, similar to conventional powertrains. Vehicle surge is a low-frequency vibration phenomenon. In general, the source is torque fluctuation caused by the engine and tires, with amplification provided by first-order torsional driveline resonance, power plant resonance, suspension resonance, and cabin resonance. This vibration is amplified more during towing.
Journal Article

Mechanism of Low Frequency Idling Vibration in Rear-Wheel Drive Hybrid Vehicle Equipped with THS II

2015-06-15
2015-01-2255
Although idling vibration is usually caused by 1st order of engine combustion force, other engine forces also occur at frequencies lower than the 1st order of combustion (called low frequency idling vibration in this paper). The drive-line of the Toyota Hybrid System II (THS II) has different torsional vibration characteristics compared to a conventional gasoline engine vehicle with an automatic transmission. Nonlinear characteristics caused by the state of backlash of pinions and splines influence changes in the torsional resonance frequency. The torsional resonance frequency of the drive-line can be controlled utilizing the hybrid system controls of the THS II.
X