Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

A Maximum Incompatibility Constrained Collaborative Optimization Method for Vehicle Weight Reduction

2018-04-03
2018-01-0585
Collaborative optimization is an important design tool in complex vehicle system engineering. However, there are many problems yet to be resolved when applying the conventional collaborative optimization method in vehicle body weight reduction, such as convergence difficulties and low optimization efficiency. To solve these problems, a maximum incompatibility constrained collaborative optimization method is proposed in the paper. First, the 1-norm equality constraints expression of the system level is used to replace the traditional 2-norm inequality constraints. Then, a maximum incompatibility is selected from modified inequality constraints to improve optimization efficiency. Finally, an overall compatibility constraint is introduced to decrease the influence caused by the initial point. A mathematical example is used to verify the effectiveness and stability of the proposed method.
Technical Paper

Investigation of the Samples Size Effects on Hybrid Surrogate Model Component Surrogates for Crashworthiness Design

2018-04-03
2018-01-1028
Surrogate model based design optimization has been widely adopted in automotive industry. Hybrid surrogate model with multiple component surrogates is considered to be a better choice when simulating highly non-linear responses in vehicle crashworthiness analysis. Currently, the number of component surrogates has to be decided before-hand when constructing of a hybrid surrogate model. This paper conducts a comparative study on the performances of three popular hybrid modeling methods including heuristic computation strategy, and two kinds of optimal weighted surrogates. The effects of samples size on the number of individual surrogates that should be included into the final hybrid surrogate models for crashworthiness responses are investigated. Different hybrid modeling techniques and multiple validation criteria are evaluated. Some observations and conclusions on the selection of component surrogates in hybrid surrogate modeling are given in the end.
Technical Paper

Quantification of Meta-model and Parameter Uncertainties in Robust Design

2016-04-05
2016-01-0279
To reduce the computational time of the iterations in robust design, meta-models are frequently utilized to approximate time-consuming computer aided engineering models. However, the bias of meta-model uncertainty largely affects the robustness of the prediction results, this uncertainty need to be addressed before design optimization. In this paper, an efficient uncertainty quantification method considering both model and parameter uncertainties is proposed. Firstly, the uncertainty of parameters are characterized by statistical distributions. The Bayesian inference is then performed to improve the predictive capabilities of the surrogate models, meanwhile, the model uncertainty can also be quantified in the form of variance. Monte Carlo sampling is finally utilized to quantify the compound uncertainties of model and parameter. Furthermore, the proposed uncertainty quantification method is used for robust design.
Journal Article

Development of a Comprehensive Validation Method for Dynamic Systems and Its Application on Vehicle Design

2015-04-14
2015-01-0452
Simulation based design optimization has become the common practice in automotive product development. Increasing computer models are developed to simulate various dynamic systems. Before applying these models for product development, model validation needs to be conducted to assess their validity. In model validation, for the purpose of obtaining results successfully, it is vital to select or develop appropriate metrics for specific applications. For dynamic systems, one of the key obstacles of model validation is that most of the responses are functional, such as time history curves. This calls for the development of a metric that can evaluate the differences in terms of phase shift, magnitude and shape, which requires information from both time and frequency domain. And by representing time histories in frequency domain, more intuitive information can be obtained, such as magnitude-frequency and phase-frequency characteristics.
X