Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Next Generation All in One Close-Coupled Urea-SCR System

2015-04-14
2015-01-0994
Diesel engines provide a solution for the reduction of carbon dioxide (CO2) from motor vehicles. For diesel engines, however, technology to reduce nitrogen oxide (NOx) emissions is essential. This report focuses on Urea - Selective Catalytic Reduction (SCR) as an aftertreatment system for NOx reduction. The NOx conversion performance of SCR catalyst depends on exhaust gas temperature and the NO2/NOX ratio. In order to raise the NO2/NOX ratio, it is essential to raise the temperature of oxidation catalyst. For these purposes, it is necessary to raise the temperature of oxidation catalyst and SCR catalyst to high level in order to enhance NOx conversion. Temperature rising is implemented by in-cylinder fuel injection (post-injection).
Technical Paper

Optimized NH3 Storage Control for Next Generation Urea-SCR System

2015-04-14
2015-01-1024
A diesel engine is possible solution for carbon dioxide (CO2) reduction from automobiles. However, it is necessary for a diesel engine vehicle to reduce nitrogen oxide (NOx) emission. Therefore, this research focused on a Urea-selective catalytic reduction (urea-SCR) system as an after-treatment system to convert NOx and proposes the control method of the urea-SCR system based on the output of an ammonia (NH3) sensor. By maximizing NH3 storage rate of the SCR, conversion performance is maximized. To maximize the NH3 storage rate, an NH3 sensor is installed downstream of the SCR. The amount of urea-solution is controlled to keep NH3 slip detected by the sensor. Thus, the NH3 storage amount in the SCR or the SCRF (SCR on filter) can be maximized. The estimation and the control of NH3 storage amount is also used to cause NH3 slip immediately. NH3 storage capacity changes with catalyst temperature. In a transient state, temperature distribution occurs in the SCR catalyst.
X