Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Modelling and Simulation of Rapidly Changing Road Gradients

2016-04-05
2016-01-1663
In vehicle dynamics modelling, the road profile is generally treated in one of two ways; either the gradient is a property that changes over a length scale far greater than that of the vehicle's wheelbase, or as a very detailed road surface model for determining the behaviour of vehicle suspensions. Occasionally, for modelling the behaviour of off-road vehicles, step-climbing manoeuvres are modelled. We propose an extension of these step-climbing models to a general, continuously varying road gradient model for cases where the distance over which the large gradient change occurs are of similar length-scale as the vehicle wheelbase. The motivation behind this work comes from a road gradient and vehicle mass estimation problem where it was noticed that very sudden gradient changes have a significant impact on the powertrain, but in a way that is not proportional to the attitude change of the vehicle.
Journal Article

Gradient and Mass Estimation from CAN Based Data for a Light Passenger Car

2015-04-14
2015-01-0201
We present a method for the estimation of vehicle mass and road gradient for a light passenger vehicle. The estimation method uses information normally available on the vehicle CAN bus without the addition of extra sensors. A composite parameter estimation algorithm incorporating a nonlinear adaptive observer structure uses vehicle speed over ground and driving torque to estimate mass and road gradient. A system of filters is used to avoid deriving acceleration directly from wheel speed. In addition, a novel data fusion method makes use of the regressor structure to introduce information from other sensors in the vehicle. The dynamics of the additional sensors must be able to be parameterised using the same parameterisation as the complete vehicle system dynamics. In this case we make use of an Inertial Measurement Unit (IMU) which is part of the vehicle safety and Advanced Driver Assist Systems (ADAS).
X