Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Characteristics of a Brake Disc’s Nonuniform Thermomechanical Responses to an Emergency Braking

2019-09-15
2019-01-2118
Brake discs in service are subjected to the combined thermal and mechanical loadings. Due to the complex interactions of different parts in operating brake systems and various thermal and mechanical boundary conditions, the thermomechanical responses of brake discs are highly nonuniformly distributed across the brake discs. In this paper, a detailed finite element analysis model was developed to understand the thermomechanical responses of a solid brake disc to an emergency braking. The temperature and the stress in the brake disc were then characterized thoroughly in the radial, circumferential and thickness direction of the disc, and it was found that they were all nonuniformly distributed in the three directions. Furthermore, the stress responses of the disc due to the combined thermal and mechanical loadings were separated into thermal stress and mechanical stress, and their particular characteristics to the individual thermal or mechanical loading were identified.
Technical Paper

Finite Element Analysis of a Brake Disc under Constant Mechanical Loading

2017-09-17
2017-01-2490
A brake disc is one of the most critical components in modern vehicle’s brake systems; hence, thorough validation of its performances in the development process by simulations, rig and vehicle tests is essential. In this paper, a disc brake system under a constant braking torque is analyzed using finite element method, and the stress and strain in a rotating ventilated brake disc employed are studied comprehensively. From detailed examination of the stress distribution and the cyclic stress history, it is found that the maximum stress in the rotating brake disc under the constant mechanical loading only occurs at some specified locations; and the stress history is multiaxial and non-proportional. These findings will help, as guidelines, to develop suitable evaluation tools for the strength and the fatigue of the brake discs; to setup proper laboratory test procedures and equipment; and to design strong and durable brake discs.
X