Refine Your Search

Search Results

Author:
Viewing 1 to 10 of 10
Journal Article

Automated Aerodynamic Vehicle Shape Optimization Using Neural Networks and Evolutionary Optimization

2015-04-14
2015-01-1548
The foremost aim of the work presented in this paper is to improve fuel economy and decrease CO2 emissions by reducing the aerodynamic drag of passenger vehicles. In vehicle development, computer aided engineering (CAE) methods have become a development driver tool rather than a design assessment tool. Exploring and developing the capabilities of current CAE tools is therefore of great importance. An efficient method for vehicle shape optimization has been developed using recent years' advancements in neural networks and evolutionary optimization. The proposed method requires the definition of design variables as the only manual work. The optimization is performed on a solver approximation instead of the real solver, which considerably reduces computation time. A database is generated from simulations of sampled configurations within the pre-defined design space. The database is used to train an artificial neural network which acts as an approximation to the simulations.
Technical Paper

Wake and Unsteady Surface-Pressure Measurements on an SUV with Rear-End Extensions

2015-04-14
2015-01-1545
Previous research on both small-scale and full-scale vehicles shows that base extensions are an effective method to increase the base pressure, enhancing pressure recovery and reducing the wake size. These extensions decrease drag at zero yaw, but show an even larger improvement at small yaw angles. In this paper, rear extensions are investigated on an SUV in the Volvo Cars Aerodynamic Wind Tunnel with focus on the wake flow and on the unsteady behavior of the surface pressures near the base perimeter. To increase the effect of the extensions on the wake flow, the investigated configurations have a closed upper- and lower grille (closed-cooling) and the underbody has been smoothed with additional panels. This paper aims to analyze differences in flow characteristics on the wake of an SUV at 0° and 2.5° yaw, caused by different sets of extensions attached to the base perimeter. Extensions with several lengths are investigated with and without a kick.
Technical Paper

Effect of Rear-End Extensions on the Aerodynamic Forces of an SUV

2014-04-01
2014-01-0602
Under a global impulse for less man-made emissions, the automotive manufacturers search for innovative methods to reduce the fuel consumption and hence the CO2-emissions. Aerodynamics has great potential to aid the emission reduction since aerodynamic drag is an important parameter in the overall driving resistance force. As vehicles are considered bluff bodies, the main drag source is pressure drag, caused by the difference between front and rear pressure. Therefore increasing the base pressure is a key parameter to reduce the aerodynamic drag. From previous research on small-scale and full-scale vehicles, rear-end extensions are known to have a positive effect on the base pressure, enhancing pressure recovery and reducing the wake area. This paper investigates the effect of several parameters of these extensions on the forces, on the surface pressures of an SUV in the Volvo Cars Aerodynamic Wind Tunnel and compares them with numerical results.
Technical Paper

Experimental and Numerical Investigations of the Base Wake on an SUV

2013-04-08
2013-01-0464
With the increase in fuel prices and the increasingly strict environmental legislations regarding CO₂ emissions, reduction of the total energy consumption of our society becomes more important. Passenger vehicles are partly responsible for this consumption due to their strong presence in the daily life of most people. Therefore reducing the impact of cars on the environment can assist in decreasing the overall energy consumption. Even though several fields have an impact on a passenger car's performance, this paper will focus on the aerodynamic part and more specifically, the wake behind a vehicle. By definition a car is a bluff body on which the air resistance is for the most part driven by pressure drag. This is caused by the wake these bodies create. Therefore analyzing the wake characteristics behind a vehicle is crucial if one would like to reduce drag.
Journal Article

Aerodynamic Effects of Different Tire Models on a Sedan Type Passenger Car

2012-04-16
2012-01-0169
Targets for reducing emissions and improving energy efficiency present the automotive industry with many challenges. Passenger cars are by far the most common means of personal transport in the developed part of the world, and energy consumption related to personal transportation is predicted to increase significantly in the coming decades. Improved aerodynamic performance of passenger cars will be one of many important areas which will occupy engineers and researchers for the foreseeable future. The significance of wheels and wheel housings is well known today, but the relative importance of the different components has still not been fully investigated. A number of investigations highlighting the importance of proper ground simulation have been published, and recently a number of studies on improved aerodynamic design of the wheel have been presented as well. This study is an investigation of aerodynamic influences of different tires.
Technical Paper

Influences of Different Front and Rear Wheel Designs on Aerodynamic Drag of a Sedan Type Passenger Car

2011-04-12
2011-01-0165
Efforts towards ever more energy efficient passenger cars have become one of the largest challenges of the automotive industry. This involves numerous different fields of engineering, and every finished model is always a compromise between different requirements. Passenger car aerodynamics is no exception; the shape of the exterior is often dictated by styling, engine bay region by packaging issues etcetera. Wheel design is also a compromise between different requirements such as aerodynamic drag and brake cooling, but as the wheels and wheel housings are responsible for up to a quarter of the overall aerodynamic drag on a modern passenger car, it is not surprising that efforts are put towards improving the wheel aerodynamics.
Technical Paper

A Wind Tunnel Study Correlating the Aerodynamic Effect of Cooling Flows for Full and Reduced Scale Models of a Passenger Car

2010-04-12
2010-01-0759
In the early stages of an aerodynamic development programme of a road vehicle it is common to use wind tunnel scale models. The obvious reasons for using scale models are that they are less costly to build and model scale wind tunnels are relatively inexpensive to operate. It is therefore desirable for model scale testing to be utilized even more than it is today. This however, requires that the scale models are highly detailed and that the results correlate with those of the full size vehicle. This paper presents a correlation study that was carried out in the Chalmers and Volvo Car Aerodynamic Wind Tunnels. The aim of the study was to investigate how successfully a correlation of the cooling air flow between a detailed scale model and a real full size vehicle could be achieved. Results show limited correlation on absolute global aerodynamic loads, but relative good correlation in drag and lift increments.
Technical Paper

Effects of Ground Simulation on the Aerodynamic Coefficients of a Production Car in Yaw Conditions

2010-04-12
2010-01-0755
Automotive wind tunnel testing is a key element in the development of the aerodynamics of road vehicles. Continuous advancements are made in order to decrease the differences between actual on-road conditions and wind tunnel test properties and the importance of ground simulation with relative motion of the ground and rotating wheels has been the topic of several studies. This work presents a study on the effect of active ground simulation, using moving ground and rotating wheels, on the aerodynamic coefficients on a passenger car in yawed conditions. Most of the published studies on the effects of ground simulation cover only zero yaw conditions and only a few earlier investigations covering ground simulation during yaw were found in the existing literature and all considered simplified models. To further investigate this, a study on a full size sedan type vehicle of production status was performed in the Volvo Aerodynamic Wind Tunnel.
Journal Article

Detailed Flow Studies in Close Proximity of Rotating Wheels on a Passenger Car

2009-04-20
2009-01-0778
Moving ground systems with rotating wheels have been used in wind tunnel tests during the last decades. Several studies on the effects of rotating wheels and the importance of wheel aerodynamics have been published. It is well known that both the local flow field and the global aerodynamic forces are affected by rotation of the wheels. Different studies indicate that the most significant effect from rotating the wheels is interference effects between the rear wheels and the underbody and vehicle base [1], [2]. A detailed flow field investigation around the wheels in close proximity to the vehicle has been performed on a passenger car in the Volvo Aerodynamic Wind Tunnel. Two omnidirectional 12-hole pressure probes were traversed in a number of planes close to the wheels. Effects of changing different parameters such as ground simulation and rim geometry were investigated. The local flow field has been scrutinised and related to the global aerodynamic properties of the vehicle.
Technical Paper

Upgrade of the Volvo Cars Aerodynamic Wind Tunnel

2007-04-16
2007-01-1043
The aerodynamic wind tunnel at Volvo Cars, known as the PVT, was recently upgraded to a moving ground wind tunnel to improve simulation quality. The moving ground simulation system consists of a 5-belt rolling road system (a centre belt and four wheel drive units). Flow simulation has also been improved by a new boundary layer control (BLC) system with a basic suction scoop, large distributed suction areas and aft belt tangential blowing. In addition, the wind tunnel main fan motor has been up-graded from 2.3 MW to 5 MW to provide a wind speed of 250 km/h in the full test section. Previously, 250 km/h was achieved only by installing inserts to reduce the test section area. The present paper provides an outline of the design features, philosophy of the new systems, aerodynamic calibration and commissioning results.
X