Refine Your Search

Search Results

Author:
Viewing 1 to 8 of 8
Technical Paper

SOC Estimation Based on an Adaptive Mixed Algorithm

2020-04-14
2020-01-1183
SOC (State of charge) plays an important role in vehicle energy management, utilization of battery pack capacity, battery protection. Model based SOC estimation algorithm is widely regarded as an efficient computing method, but battery model accuracy and measuring noise variance will greatly affect the estimation result. This paper proposed an adaptive mixed estimation algorithm. In the algorithm, the recursive least squares algorithm was used to identify the battery parameters online with a second-order equivalent circuit model, and an adaptive unscented Kalman method was applied to estimate battery SOC. In order to verify the effect of the proposed algorithm, the experimental data of a lithium battery pack was applied to build a simulation model. The results show that the proposed joint algorithm has higher estimation accuracy and minimum root mean square error than other three algorithms.
Technical Paper

A New Flux Weakening Control Strategy for IPMSM (Interior Permanent Magnet Synchronous Machine) in Automotive Applications

2020-04-14
2020-01-0466
As one of the core components of electric vehicles(EV), the drive motor system has a significant impact on the EV operation performance. The interior permanent magnet synchronous motor (IPMSM) has a wide range of applications in EV, due to its high efficiency, high power density, high torque current and wide speed range. In the field of EV, motor control system is required to have a high operating range. IPMSM operates at constant torque mode below rated speed and constant power mode above rated speed. The back electromotive force(Back-EMF) generated by the rotor in the constant power mode causes the inverter output voltage to saturate. Therefore, it is necessary to ensure that the controller is still operating in the linear region by applying a flux weakening(FW) current to the stator.
Technical Paper

Multi-Parameter Logic Threshold Driving Control Strategy of Distribution Hybrid Electric Vehicle Based on xPC Test Platform

2019-04-02
2019-01-1211
A control strategy for searching the optimal working interval based on multi-parameter logic threshold is proposed for the power system of distributed hybrid electric vehicles. The battery state of charge working area and boundary velocity threshold are combined with the optimal engine working curve. Offline simulation of 0-32 km/h acceleration performance is conducted. To further verify the validity of generating C code, a hardware-in-the-loop (HIL) test platform based on MATLAB/RTW/xPC target is built. Real-time simulation and real-time performance comparison test are performed. Test results show that the designed multi-parameter logic threshold control strategy achieves reasonable allocation of energy and improves the dynamic performance of vehicles. The xPC HIL simulation test system is feasible and provides a fast test verification method for vehicle control strategy development.
Technical Paper

Development of an Advanced Motor Control System for Electric Vehicles

2019-04-02
2019-01-0597
Electric vehicles are considered as one of the most popular way to decrease the consumption of petroleum resources and reduce environmental pollutions. Motor control system is one of the most important part of electric vehicles. It includes power supply module, IGBT driver, digital signal processing (DSP) controller, protection adjustment module, and resolver to digital convertor. To implement the control strategies on motor control system, a lot of practical aspects need to be taken into accounts. It includes setup of the initial excitation current, consistency of current between motor and program code, over-modulation, field weakening control, current protection, and so on. In this paper, an induction motor control system for electric vehicles is developed based on DSP. The control strategy is based on the field-oriented control (FOC) and space vector pulse width modulation (SVPWM).
Technical Paper

Dynamic Correction Strategy for SOC Based on Discrete Sliding Mode Observer

2019-04-02
2019-01-1312
Battery state estimation is one of the most important decision parameters for lithium battery energy management. It plays an important role in improving battery energy utilization, ensuring battery safety and enhancing system reliability. This paper is proposed to provide a dynamic correction of SOC in the full working condition, including static condition and dynamic condition. Based on the Coulomb-counting method, the current SOC value of the battery is calculated. Under the static conditions, the open circuit voltage of the battery is used to directly collect the initial SOC. Under the dynamic working conditions, the open circuit voltage of the battery is estimated by the sliding mode observer. Based on the deviation between the calculated and estimated values of the open circuit voltage, the current coefficient of the Coulomb-counting method is dynamically corrected by PI strategy.
Technical Paper

Battery Management System Based on AURIX Multi-Core Architecture

2019-04-02
2019-01-1310
Battery management system (BMS) is the core component of the new energy vehicle battery system. With the increase of energy density of new energy vehicle battery, its control algorithm becomes more and more complex, and the work of the battery management system will be heavier. In order to solve the limits, the hardware, software and control strategy model of battery management system are developed based on AURIX multi-core microcontroller. The microprocessor control unit is developed by using dual-core chip, which meets the functional safety requirements. Dual-core processing of control strategy and individual information acquisition are realized, and the processing efficiency is improved. A four-tier software architecture of battery management system is developed to handle the Dual-core processing. The graphical development of battery management system strategy model is realized by using MATLAB / Simulink.
Technical Paper

Model-in-Loop Automated Test Based on Function Requirements of BMS

2018-04-03
2018-01-0434
It is important to verify the requirements of battery management strategy (BMS), which is directly related to the safety of the electric vehicles. A model-in-loop test framework was established to realize the automated test based on the application scenario of BMS, including battery simulation module, battery management strategy module, test sequence module and function assessment module. The inputs of the automated test were designed in the test sequence module. The function requirements of state estimation, balance control, security protection, thermal management and fault diagnosis were designed in the function assessment module. The test results show that the proposed model-in-loop test can reach 100% of function requirements, and 87% of execution coverage. Additional automated test cases can be added to the proposed model-in-loop test, and it will be an effective method to the requirements verification of battery management strategy.
Technical Paper

The Development of an Advanced Vehicle Control Platform for Pure Electric Vehicles

2015-04-14
2015-01-0229
Pure electric vehicles are recognized as one of the most important new energy vehicle types to meet the increasingly stringent standards in energy saving and environment protection. To meet the control demands, China Automotive Technology & Research Center(CATARC) plan to develop an advanced Vehicle Control Platform(VCP) for pure electric vehicles. The developed VCP is well structured on both hardware and software and can be adapted to different pure electric vehicles easily. This paper describes the design of the hardware, the software architecture, the base software and the control strategy applied in the VCP in detail. A matching method is proposed to configure the VCP to a real VCU for the specific application by modifying the hardware channel definition and the control parameters. The paper shows successful application of the VCP on several types of pure electric vehicles.
X