Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Experimental Analysis of the Urea-Water Solution Temperature Effect on the Spray Characteristics in SCR Systems

2015-09-06
2015-24-2500
One of the favored automotive exhaust aftertreatment solutions used for nitrogen oxides (NOx) emissions reductions is referred to as Selective Catalytic Reduction (SCR), which comprises a catalyst that facilitates the reactions of ammonia (NH3) with the exhaust nitrogen oxides (NOx). It is customary with these systems to generate the NH3 by injecting a liquid aqueous urea solution (AUS-32) into the exhaust. The urea solution is injected into the exhaust and transformed to NH3 by various mechanisms for the SCR reactions. Understanding the spray performance of the AUS-32 injector is critical to proper optimization of the SCR injection system. Results were previously presented from imaging of an AUS-32 injector spray under hot exhaust conditions at the injector spray exit for an exhaust injection application.
Technical Paper

AUS-32 Injector Spray Imaging on Hot Air Flow Bench

2015-04-14
2015-01-1031
The recent implementation of new rounds of stringent nitrogen oxides (NOx) emissions reduction legislation in Europe and North America is driving the expanded use of exhaust aftertreatment systems, including those that treat NOx under the high-oxygen conditions typical of lean-burn engines. One of the favored aftertreatment solutions is referred to as Selective Catalytic Reduction (SCR), which comprises a catalyst that facilitates the reactions of ammonia (NH3) with the exhaust nitrogen oxides (NOx). It is customary with these systems to generate the NH3 by injecting a liquid aqueous urea solution, typically at a 32% concentration of urea (CO(NH2)2). The solution is referred to as AUS-32, and is also known under its commercial name of AdBlue® in Europe, and DEF - Diesel Exhaust Fluid - in the USA. The urea solution is injected into the exhaust and transformed to NH3 by various mechanisms for the SCR reactions.
X