Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Multi-Objective Optimization of Response Characteristics for High Power Common Rail Injector

2020-04-14
2020-01-0833
High pressure common rail system (HRCRS) is regarded as the most promising fuel injection system. As the key element of the HPCRS, the performance of the electronically controlled common rail injector (ECCRI) determines the working ability of the diesel engines. Excellent response characteristic is an important guarantee for the ECCRI to realize ideal injection rate, which means a lot to the combustion quality for the diesel engines. In an effort to investigate the response characteristics of the ECCRI, a simulation model for high power ECCRI was presented in this article. And 8 crucial structural parameters about the response characteristics were selected as the research factors. Based on Central Composite Design of Experiment and Response Surface Method, the prediction models between the opening response time (ORT) and the closing response time (CRT) of the ECCRI and the crucial parameters were established.
Technical Paper

Response Surface Analysis on Fuel Injection Quantity Fluctuation of Electronic In-Line Pump System for Diesel Engines

2015-04-14
2015-01-0940
Electronic in-line pump system (EIPS) is an electronic controlled fuel injection system which meets China's emission regulations. In this paper, a numerical model of EIPS was developed in AMESim for the purpose of creating a tool for simulation experiments. Experiments were conducted at the same model conditions to validate the model. The results are quite encouraging and in agreement with model predictions which imply that the model can accurately predict the dynamic injection characteristics of EIPS. The design of experiments was performed using a 2-level-5-factor face-centered central composite design (FCCD) method in order to study the interactive effect of factors on fuel injection quantity fluctuation (FIQF). The factors studied were supply fuel pressure, cam linear velocity, control valve lift, needle spring pretightening force and nozzle flow coefficient.
X