Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Electromagnetic and Structural Analysis of Synchronous Reluctance Motors for Electric Vehicle Applications

2017-01-10
2017-26-0086
With Increasing environmental concerns and high fuel prices, the automotive industry is shifting its focus to electric vehicles (EVs). Electric motor being the heart of an electric vehicle, faces a major design challenge to have optimum performance and structural strength at an affordable cost. Synchronous reluctance motor offers higher power density at low cost since the rotor is free from rare earth permanent magnets or field excitation. However, torque fluctuations and resulting vibrations are a major concern. This is amended by optimizing the end-barrier width and end-barrier orientation angle in the rotor so as to maximize the torque and minimize the ripple. Simulations are also performed with ferrite magnets assistance to achieve an enhanced torque output. In each case, a structural analysis is done to verify the mechanical strength and rotor deformation considering structural and electromagnetic forces. The analyses are performed using finite element simulations.
Technical Paper

A Novel Constant Torque Eddy-Current Brake for Automotive Applications

2015-04-14
2015-01-1203
Electromagnetic brakes are found in a variety of applications. They offer tremendous advantages including: absence of fading, high braking torque and controllability. However they suffer from decreasing torque at low and high speeds. In this study, a novel concept of permanent magnet eddy-current brake is proposed that maintains a flat braking torque profile over a broad speed range. The principle is analytically investigated and numerically validated through finite element simulations using MAXWELL. It is demonstrated that a usably flat braking torque profile can be achieved by altering the path of eddy-currents by magnetic field orientation, thereby affecting the apparent rotor resistance.
X