Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Evaluating the Soot Handling Performance of Diesel Engine Oils through Optimized Engine Testing Protocol

2017-03-28
2017-01-0885
Majority of light and heavy duty commercial vehicles on road in India use API-CF grade lubricants. Soot accumulation in lubricating oil can result in engine wear and lubricant’s viscosity increase thereby affecting its pumping ability and drain interval. Due to faster lubricant degradation and with emergence of newer engine technologies, there is increasing demand of improving performance of lubricants particularly with respect to soot dispersancy. This paper describes the various engine hardware modifications and optimizations carried out on a commercial BS II, 4-cylinder turbocharged diesel engine in order to develop a flexible engine test procedure for evaluating the lubricant’s dispersancy/anti wear characteristics up to 6% soot levels.
Technical Paper

Experimental Studies on n-Butanol/Gasoline Fuel Blends in Passenger Car for Performance and Emission

2016-10-17
2016-01-2264
In the current scenario of global emissions, growing demand for petroleum fuels and highly volatile crude prices, the current usage of petroleum fuel must be curbed to reduce dependence on fossil fuels and to reduce environmental pollution several alternative fuels are being explored. Butanol is one of the potential alternative fuels that can be used in IC engines in the same way of conventional fuels for reducing conventional fuels. An experimental study was conducted to establish the impact of n-butanol as a blending component for gasoline fuel in passenger car on chassis dynamometer. Commercial gasoline meeting Euro-IV fuel standards was used as the base fuel while n-butanol was used as the blending component in the ratio of 5, 10 & 20% by volume. The vehicle was tested on chassis dynamometer for fuel evaluation in respect of fuel economy, regulated and un-regulation emissions under standard driving cycle of NEDC.
Technical Paper

Experimental Investigation of n-Butanol Diesel Fuel Blends on a Passenger Car

2015-04-14
2015-01-0903
N-butanol is a promising alternative fuel which needs no engine modification when used as a blend with diesel. The miscibility of n-butanol with diesel is excellent in a wide range of blending ratios. N-butanol has high oxygen content and a comparable energy content, specific gravity and viscosity to that of diesel, which makes it attractive for diesel engines as an alternative fuel. An experimental investigation was conducted to assess the performance of a new generation passenger car with respect to power, fuel economy (FE) and mass emission using 5, 10 and 20 percent (by vol.) n-butanol blends with diesel (NB). Computer controlled DC motor driven chassis dynamometer, AVL AMA I60 mass emission measuring system and AVL FSN smoke meter were used for measuring wide open throttle (WOT) power, road load simulation (RLS) fuel economy, mass emissions and smoke in WOT and steady speed driving conditions.
Technical Paper

Performance Analysis of HCNG Fuel on Sequential Gas Injection Based Heavy Duty Engine

2015-03-10
2015-01-0005
Depletion of fossil fuel reserves, the unsteadiness of their prices and the increasingly stricter exhaust emission legislation put forward attention of world towards use of alternate fuels. The ever increasing demand for ecologically friendly vehicles can be met by use of clean fuels like Compressed Natural Gas (CNG) and Hydrogen (H2). Lower carbon to hydrogen ratio of CNG makes it a cleaner fuel, due to this CNG is gaining popularity as an internal combustion (IC) engine fuel in transport sector. Hydrogen fuel for IC engines is also being considered as a future fuel due to its simple carbon less structure. However, several obstacles have to be overcome before widespread utilization of hydrogen as an IC engine fuel can occur in the transport sector. The 18 percent hydrogen enriched CNG fuel referred to as HCNG has the potential to lower emissions and could be considered a first step towards promotion of a Hydrogen economy.
Technical Paper

Volatile Organic Compounds (VOCs) in Ambient Air - A Case Study at the Vicinity of Fuel Filling Stations in New Delhi, India

2015-03-10
2015-01-0055
Volatile Organic Compounds (VOCs) present in ambient air are potentially toxic among the air pollutants. They are present in the urban atmosphere due to both exhaust emissions from vehicles and evaporative emissions at fuel filling stations. The present study aims to provide an indication of ambient levels of benzene, a carcinogenic VOC in the immediate vicinity of petrol filling stations in Delhi & National Capital Region (NCR). The monitoring of benzene is conducted across the vicinity of petrol stations to ascertain the effect of outside pollutant concentration on forecourt area. Continuous monitoring of benzene was achieved by an air quality monitoring facility stationed across the selected locations at four selected fuel filling stations. It was observed that the average concentrations of benzene measured during the study ranged between 2.28 ppb - 9.43 ppb.
X