Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Development of Dual Fuel (Diesel + CNG) Engine for Off-Road Application

2021-09-22
2021-26-0119
The evolution of engine technology has so far seen the most beneficial side of progress in the fields of transportation, agriculture, and mobility. With the advent of innovation, there is also an impact on our environment that needs to be balanced. This is where fuels like CNG, LPG, LNG, etc. outperform conventional fossil fuels in terms of pollution & operational cost. This paper enlightens on the use of innovative dual-fuel technology where diesel & CNG fuels are used for combustion simultaneously inside the combustion chamber. Dual fuel system adaptation for farm application ensures self-reliance of the farmer where he can generate Bio-CNG to use the renewable fuel for farming making him less dependent on conventional fossil fuel thus promoting a green economy. The dual-fuel system is adapted to the existing in-use diesel engine with minimum modifications. This makes it feasible to retrofit a CNG fuel system on an existing diesel engine to operate it on dual fuel mode.
Technical Paper

Experimental Analysis of Heavy Duty CNG Engine Based on Its Aspiration and Fuel System

2021-09-22
2021-26-0117
Engine calibration involves the interaction of electronic components with various engine systems like intake system, exhaust system, ignition system, etc. Emissions are the by-products of combustion of fuel and air inside the combustion chamber. After-treatment systems generally take up the responsibility to scrape out harmful emissions from the engines. However, a good engine calibration will focus on emission reduction at source i.e., during the combustion itself. Thus, the intake of air and fuel in proper amount at each engine operating point is crucial for optimized engine performance and minimal emissions. The Intake system is an integral part of any internal combustion engine and it plays an important role to improve its performance and emission. Generally, for a SI engine, maintaining the stoichiometric A/F ratio is a challenging endeavour from an operational standpoint.
Technical Paper

EGR Strategies Pertaining to High Pressure and Low Pressure EGR in Heavy Duty CNG Engine to Optimize Exhaust Temperature and NOx Emissions

2021-09-22
2021-26-0114
CNG has proven to be a concrete alternative to gasoline and diesel fuel for sustained mobility. Due to stringent emission norms and sanctions being imposed on diesel fuel vehicles, OEMs have shifted their attention towards natural gas as an efficient and green fuel. Newly implemented BS VI emission norms in India have stressed on the reduction of Nitrogen Oxides (NOx) from the exhaust by almost 85% as compared to BS IV emission norms. Also, Indian Automotive market is fuel economy cautious. This challenges to focus on improving fuel economy but without increase in NOx emissions. Exhaust Gas Recirculation (EGR) has the potential to reduce the NOx emissions by decreasing the in-cylinder temperature. The objective of the paper is to model a CNG TCIC engine using 1D simulation in order to optimize the NOx emissions and maintain exhaust temperatures under failsafe limits.
Journal Article

Challenges Overwhelmed to Meet BSVI Emissions with SPFI Fuel System for Heavy-Duty CNG Engine Application

2021-09-22
2021-26-0102
As competent and low-pollution alternative fuel, CNG has revealed its excellence over engine performance and emissions. In recent years, CNG is considered as the diesel engine alternative fuel for heavy-duty engine applications due to its lower emissions and cost effective after-treatment systems. Due to the implementation of stricter emission norms over the years, the evolution of the fuel supply system has become more robust and electronically controlled. In the case of CNG engines, most of the engines were equipped with MPFI fuel system, for its precise fuel control abilities and controlling emission parameters. However, this MPFI system encompasses severe design changes in the intake manifold and is cost worthy to OEMs over the SPFI fuel system. MPFI system adds on the overall cost of the engine unit and its maintenance when compared to SPFI system.
Journal Article

Effect of CCV and OCV System in Heavy Duty CNG Engine on the Particulate Emissions

2021-09-22
2021-26-0116
Due to increasing pollution and climatic cries, newly implemented BS-VI emission norms in India have stressed the reduction of emission. For which many automobiles have been shifted to alternate fuels like CNG. Also, the Indian Automotive market is fuel economy cautious. This challenges to focus on improving fuel economy but without an increase in emissions. Crankcase blow-by gases can be an important source of particulate emission as well as other regulated and unregulated emissions. They can also contribute to the loss of lubricating oil and fouling of surface and engine components. Closed Crankcase Ventilation (CCV) or Open Crankcase Ventilation (OCV) is capable to reduce particulate emissions by removing the oil mist that is caused mainly due to blow-by in the combustion chamber. This paperwork is focused, to measure the effectiveness of the CCV and OCV systems on the engine-out emissions, primarily on the particulate emissions.
Technical Paper

Development of Diesel-Ethanol Engine for HCV

2019-01-09
2019-26-0089
Diesel engines dominate in Heavy-Duty applications due to its better fuel economy, higher durability and larger reliability. Fuels derived from petroleum resources are depleting daily and it’s become a scarce resource for future generation to come. With growing environmental consciousness of the adverse implications brought by excessive usage of fossil fuels, the battle for finding alternative fuels as their substitution is getting heated up. At present, renewable energy from bio-fuels has been peddled as one of the most promising substitution for petroleum derived diesel. Using bio-ethanol blended diesel fuel for automobile can significantly reduce diesel usage and exhaust greenhouse gases. Bio-ethanol can be produced by alcoholic fermentation of sucrose or simple sugars. The main drawback is that ethanol is immiscible with diesel fuel over a wide range of temperatures, and the hygroscopic nature of ethanol leading to phase separation in blend.
Journal Article

Development of Multi Cylinder Turbocharged Natural Gas Engine for Heavy Duty Application

2017-01-10
2017-26-0065
CNG has recently seen increased penetration within the automotive industry. Due to recent sanctions on diesel fuelled vehicles, manufactures have again shifted their attention to natural gas as a suitable alternative. Turbocharging of SI engines has seen widespread application due to its benefit in terms of engine downsizing and increasing engine performance [1]. This paper discusses the methodology involved in development of a multi cylinder turbocharged natural gas engine from an existing diesel engine. Various parameters such as valve timing, intake volume, runner length, etc. were studied using 1D simulation tool GT power and based on their results an optimized configuration was selected and a proto engine was built. Electronic throttle body was used to give better transient performance and emission control. Turbocharger selection and its location plays a critical role.
Technical Paper

Study of In-Cylinder Tumble Effect on Spark Ignition Direct Injection (SI-DI) Engine Performance Using Gasoline, CNG & E85 Fuels and Simulation Technique

2017-01-10
2017-26-0076
Vehicles with direct injection engines employ various methods for mixing fuel and air in an engine cylinder. Efficient mixing increases combustion burn rate, improving combustion stability and knock suppression. Spark ignition engines may use tumble flow motion to generate turbulence, which includes rotational motion generally perpendicular to the cylinder axis to improve air and fuel mixing. Depending on operating conditions, more or less tumble may be advantageous. In this paper the tumble motion of the charge air is studied and simulated only in the suction stroke. A direct injected turbocharged combustion system employing central-mounted multihole injector. This paper presents the comparative study of effect of intake port design with various levels of tumble motion for fuels used in SIDI engines on the engine performance characteristics.
Technical Paper

Optimizing and Validating the Engine Performance and Emission Parameters on Engine Dynamometer through 1D Simulation of a Multi-Cylinder CNG Engine

2016-02-01
2016-28-0102
Environmental pollution has proven to be a big threat to our eco-system and pollution from automobiles using conventional fuels is a major contributor to this. Alternative fuels are the only immediate option that can help us counter the ever rising environmental pollution. In today’s date we cannot directly replace an IC engine, so the most efficient option available is using a fuel that can work with the IC engines other than gasoline and diesel. CNG proves to be the most promising fuel. A diesel engine converted to stoichiometric CNG engine was used for optimization. The paper deals with the improvement of engine power from 50HP to 60HP and up-gradation of the emission from BS-III to BS-IV norms of a multi-cylinder naturally aspirated engine. This was achieved by varying the compression ratio, valve-lift profile, intake plenum volume, runner length, spark-advance timing, fuel injection location, exhaust pipe length and catalytic converter selection.
Journal Article

Development of Dual Fuel (Diesel-CNG) Engine for SUV Application in India

2015-01-14
2015-26-0058
Towards the effort of reducing pollutant emissions, especially soot and nitrogen oxides, from direct injection Diesel engines, engineers have proposed various solutions, one of which is the use of a gaseous fuel as a partial supplement for liquid Diesel fuel. These engines are known as dual fuel combustion engines. A dual fuel (Diesel-CNG) engine is a base diesel engine fitted with a dual fuel conversion kit to enable use of clean burning alternative fuel like compressed natural gas. In this engine diesel and natural gas are burned simultaneously. Natural gas is fed into the cylinder along with intake air; the amount of diesel injection is reduced accordingly. Dual fuel engines have number of potential advantages like fuel flexibility, higher compression ratio, and better efficiency and less modifications on existing diesel engines. It is an ecological friendly technology due to lower PM and smoke emissions and retains the efficiency of diesel combustion.
Technical Paper

Predicting and Optimizing CNG Vehicle Performance on Chassis Dynamometer through 1D Simulation by using Vehicle Performance Algorithm

2015-01-14
2015-26-0059
The paper deals with the simulation of a Light Commercial Vehicle (LCV) using vehicle performance algorithms. This method speeds up the product development process. Also by using these kind of methodology in vehicle simulation there is much noticeable reduction in cost of testing. The simulation model is used for parametric studies of the vehicle and also to attain objectives such as to optimize transmission ratio, full load acceleration, maximum tractive force, gradient performance, fuel consumption and the exhaust emission. In this case study, simulation model of a CNG, LCV is used to analyze the performances similar to that done in a chassis dynamometer. The simulation leads to the prediction and evaluation of various parameters such as fuel consumption, exhaust emissions, full load acceleration, gradient performance & maximum tractive effort for Indian Driving Cycle.
Technical Paper

Injection Strategies, Optimization and Simulation Techniques on DI CNG Technology

2015-01-14
2015-26-0046
CNG has long since been established as a front runner amongst other available alternative fuels. In India, its infrastructure and penetration far exceeds others. While other, more efficient alternatives are been researched, CNG has established itself in the market as the alternative fuel of choice for majority of Indians. CNG technology has evolved itself from the basic venturi system to the more efficient sequential injection system nowadays. While the efficiency of an engine using sequential injection CNG has increased, the inherent problem with respect to lower volumetric efficiency and hence less power still persists. Direct injection CNG technology is seen as the solution to this age old problem. In the older days, the lack of technological expertise in SI direct fuel injection provided a stumbling block for development of direct gas injection.
X