Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Design and Optimization of Lip Seal for Air Braking System

2015-01-14
2015-26-0215
Reliable sealing solutions are extremely important in commercial vehicle industry because sealing failures can cause vehicle breakdown, damage of equipment or even accident, incurring expenses that are substantially higher than the costs of just replacing the damaged seals. Consequently, new seal designs must be experimentally verified and validated before they can be implemented. In this study, Mooney - Rivlin hyper elastic material model is used to simulate the sealing behavior during dynamic conditions. The seal under study is a large diameter lip seal made of Neoprene® rubber (NBR) A finite element model to study the response of the seal under dynamic conditions was developed. The analysis took into account the mating parts dimensions and the lip seal parameters. Three designs were proposed and verified. The seal design is optimized using non-linear FEA and validated. Results include contact pressure, deflection and strain experienced by the seal during actuation.
Journal Article

Design and Evaluation of Quadruple System Protection Valve Piston Assembly using Finite Element Method

2014-09-28
2014-01-2492
This paper presents a systematic procedure for design and evaluation of snap fit for Quadruple System Protection Valve (QSPV) piston assembly. The QSPV piston is assembled with housing by means of snap joint. Snap joints are a very simple, economical and rapid way of joining two different components. All types of snap joints have in common the principle that a protruding part of one component, e.g., a hook, stud or bead is deflected briefly during the joining operation and catches in a depression (undercut) in the mating component. After the joining operation, the snap-fit features should return to a stress-free condition. The joint may be separable or inseparable depending on the shape of the undercut; the force required to separate the components varies greatly according to the design. It is particularly important to bear the following factors in mind when designing snap joints: Mechanical load during the assembly operation and force required for assembly.
X