Refine Your Search

Search Results

Author:
Viewing 1 to 10 of 10
Journal Article

Robust Optimal Design for Enhancing Vehicle Handling Performance

2008-04-14
2008-01-0600
A robust design procedure is applied to achieve improved vehicle handling performance as an integral part of simulation-based vehicle design. This paper presents a hybrid robust design method, the robust design process strategy (RDPS), which makes full use of the intense complementary action of characteristics between the Response Surface Methodology (RSM) and the Taguchi method, to get the robust design of the vehicle handling performance. The vehicle multi-body dynamic model is built in the platform that is constructed by the software of iSIGHT, ADAMS/CAR, and MATLAB. The design-of-experiment method of the Latin Hypercube (LHC) is used to obtain the approximate area values, and then the RDPS is utilized to achieve improved vehicle handling performance results. The validation is made by the Monte Carlo Simulation Technique (MCST) in terms of the effectiveness of the RDPS in solving robust design problems.
Technical Paper

Modeling and Optimization of Vehicle Acceleration and Fuel Economy Performance with Uncertainty Based on Modelica

2009-04-20
2009-01-0232
To design and optimize the vehicle driveline is necessary to decrease the fuel consumption and improve dynamic performance. This paper describes a methodology to optimize the driveline design including the axle ratio, transmission shift points and transmission shift ratios considering uncertainty. A new and flexible tool for modeling multi-domain systems, Modelica, is used to carry out the modeling and analysis of a vehicle, and the multi-domain model is developed to determine the optimum design in terms of fuel economy, with determinability. Secondly, a robust optimization is carried out to find the optimum design considering uncertainty. The results indicate that the fuel economy and dynamic performance are improved greatly.
Technical Paper

Multi-domain Modeling and Simulation of Hydraulic Power Steering System Based on Modelica

2010-04-12
2010-01-0271
Hydraulic power steering system, which can reduce the steering hand force by applying the output from a hydraulic actuator, has been widely used in vehicles. In this paper, a detailed steer model including steering column, steering trapezium, and detailed hydraulic power steering system which is consisting of steering cylinder, relief valve, rotary valve, pump and hydraulic lines were established, and a multi-body model of a heavy truck was established to connect with the hydraulic power steering system. Modelica simulation language, which can be efficiently used to investigate multi-domain problems, was used to in the modeling and simulation of the power steering system and the vehicle. The simulation was carried out to identify the effects of design variables on the lateral stability of the vehicle. The application of Modelica for investigating multi-domain problems is also demonstrated.
Technical Paper

Modeling and Simulation of Hydraulic System with Fuzzy Uncertain Parameters

2010-04-12
2010-01-0913
Hydraulic systems are popular on vehicles, such as power steering, shock absorbers, brakes, etc. Many previously works have been done on the modeling and simulation of the hydraulic systems. However, these models and parameters are usually established on the basis of plans, drawings, measurements, observations, experiences, expert knowledge and standards, and so on. In general, certain information and precise values do not exist. Uncertainty may result, e.g., from human mistakes and errors in the manufacture, from the use and maintenance of constructions, from expert evaluations, and from a lack of information. Actually, many uncertain factors will lead to great errors, and may have great effect on the hydraulic system, so the research on the hydraulic system under uncertainties is very necessary. In this paper, fuzzy algorithm is introduced to analysis the response of the hydraulic system with uncertain parameters.
Technical Paper

Multi-domain Modeling and Simulation of AMT Based on Modelica

2011-04-12
2011-01-1237
The automatic mechanical transmission (AMT) was designed by automobile manufacturers to provide a better driving experience, especially in cities where congestion frequently causes stop-and-go traffic patterns. It uses electronic sensors, processors, hydraulic or pneumatic actuators execute clutch actuation and gear shifts on the command of the driver. Such systems coupled with various physical domains have great influence on the dynamic behavior of the vehicle, such as shift quality, driveability, acceleration, etc. This paper presents a detailed AMT model composed of various components from multi-domains like mechanical systems (clutch, gear pair, synchronizer, etc.), pneumatic actuator systems (clutch actuation system, gear select actuation system, gear shift actuation system, etc.). Various components and subsystem models, such as the vehicle, engine, AMT, wheels, etc., are integrated into an overall vehicle system model according to the transmission power flow and control logic.
Technical Paper

Parameters Analysis of on-Center Handling for Articulated Trucks

2018-04-03
2018-01-0136
On-center handling is one of the most important test conditions which are used to evaluate the handling performance of both passenger cars and commercial vehicles. This paper aims at investigating and verifying the influence of parameters on on-center handling of articulated trucks. A full vehicle model, including the steering system, suspension system, cab, frame, trailer and so on, was established in first by measuring the parameters of each component. The comparison of simulation and test results shown that the simulation precision of the vehicle model was up to 80%. Based on the model, the influence analysis of parameters, such as stiffness of steering drag link, steering ratio, kingpin friction, were carried out and were verified through the handling test. The analysis results indicated that larger stiffness of steering drag link, smaller gear ratio could enhance the steer sensitivity and steer stiffness, small kingpin friction is beneficial to the steering return ability.
Technical Paper

Improving Ride Comfort of a Heavy Truck

2018-04-03
2018-01-0135
Ride comfort is simply defined as the vibration performance of the vehicle which is excited by road surface roughness, generally as the vehicle moves at specific constant velocity over the road profile. Ride comfort was an important index for heavy truck, due to long distance transfer and long time driving. In order to improve the ride comfort of a heavy truck, a detailed model, including flex frame, chassis suspension, cab suspension, powertrain, etc., was built and assembled by MSC.ADAMS software. Simulation and testing data were consistent very well, which showed the correctness of the model. The optimization of chassis and cab suspension including the stiffness of the leafspring, the damping of the shock absorber, etc. was carried out to improve the ride comfort of the vehicle. The ride comfort testing was carried out on the proving ground to verify the effectiveness the optimization results. The testing results shows that the ride comfort has been improved after tuning.
Technical Paper

Influence of Frame Stiffness on Heavy Truck Ride

2016-04-05
2016-01-0449
The stiffness of the frame has a great influence on the ride comfort of the heavy truck. Reducing frame thickness was proved to be unacceptable in terms of ride comfort, which is verified by the testing results. The truck frame was reinforced in order to improve the ride comfort. The modal analysis showed that the pitch frequency of the vehicle has increased 0.5 Hz and the frequency response has decreased by 20%. In order to research the influence of frame stiffness on the heavy truck ride comfort, a detailed model including a flex frame, chassis suspension, cab suspension, driveline, etc., was built by MSC.ADAMS. The Simulation results showed that the ride comfort can be improved by reinforce the frame, and the ride comfort can be improved by 5%∼10%. The results of this study need to be further examined through field testing.
Technical Paper

The Research of Vehicle Dynamics Modeling Method Based on the Characteristics of Suspension and Steering Systems

2016-04-05
2016-01-0470
This paper presents the relationship between suspension and steering systems and wheels, and proposes the vehicle dynamics modeling method. A vehicle dynamics model combined with the suspension K&C test data of a concrete vehicle was built based on the method. The simulation results show that the method is correct and feasible, and the dynamics model performed characteristics of the suspension and steering systems with high precision can be used for the followup simulation and optimization.
Journal Article

Simulation Modeling on Dynamic Stiffness of Leaf Spring Based on Three-link Model

2017-03-28
2017-01-0421
The leaf spring has significant hysteresis characteristics due to the interleaf friction. The traditional three-link model could not simulate the hysteresis characteristics at all. According to the dynamic load test results one can find that the dynamic stiffness of leaf spring has a nonlinear relationship with the travel distance and the load frequency has a tiny influence on it. Based on the traditional three-link model, this paper proposed a simulation modeling method by introducing torsional friction on the revolute joints. The key parameters including torsional spring stiffness, friction torque preload, stiction transition velocity and max stiction deformation are optimized by combining the ADAMS and OPTIMUS. The comparison analysis between the simulation and test results of front and rear leaf springs have revealed that the maximum average errors are 4.84% and 6.41%, respectively.
X