Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Virtual Validation of Truck Chassis Using Wheel Force Transducer Data

2019-01-09
2019-26-0332
Lot of CAE (Computer Aided Engineering) based evaluation methods and DVPs (Design Verification Process) are available which are derived from acceleration data, strain data acquired on vehicle over proving ground. Using peak load summary from acceleration inputs generic gravity loads get derived. Use of these loads for CAE analysis are having certain advantages like faster concept level evaluation, broader perspective and confidence on concept design. But there are few limitations of using these methods like it gives only broader perspective of concept design and not able to capture many failure modes and locations as per RWUP (Real World Usage Pattern). This paper explains the advantages of using WFT (Wheel Force Transducer) data for getting more reliable, realistic and co-relating more failure modes on the vehicle. WFT data acquired on all four wheel-ends at wheel center. Each wheel end transducer records 3 translational and 3 rotational forces.
Technical Paper

Optimization of Commercial Vehicle’s Steering Tie Rod Arm Design Based on Strain Life Approach

2016-04-05
2016-01-0381
In the present scenario, automobile manufacturers are forced to reduce the weight of each components through design optimization. In a bid to enhance the fuel efficiency and load carrying capacity of the vehicle; however this approach may not be practical for all the parts in real life, and the engineer will end up adding further mass to the component. This is carried out to enhance the strength of the component, since considerable over load application in real world usage condition which can damage the component drastically. In this paper, steering tie rod arm of a heavy commercial vehicle was taken as a case study. The Steering tie rod arm is a part which connects the wheel spindle with steering system linkage i.e. Track rod. Track rod transfers the steered force from one wheel to another wheel and steering tie rod arm transfers the force from track rod to wheel spindle to steer both the wheels in same direction.
Technical Paper

Durability Prediction of Rear Engine Bus Using Virtual Proving Ground Road Loads

2015-01-14
2015-26-0237
Strength and durability of commercial vehicle structure is of prime importance to users while quicker time to market and least material cost are demands of competitive world. This requires assessment not just with simplistic loadcases but robust and accurate predictions closely co-relating real proving ground conditions. This paper demonstrates systematic approach of first road load predictions using MBD model, then stress analysis using FE model and finally life prediction using fatigue solver. MBD model was built using flex body, air suspensions with rigid links and tires with FTire characteristics. Same model ran on various virtual proving grounds and load history at various joints were extracted. Then inertia relief stress analysis with unit loads were carried out in Nastran and output stresses were mapped against load history in fatigue solver.
X