Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Study of Energy Absorbing Front Cabin Mount, Its Stiffness Balance with Chassis and Test Correlation in Frontal Impact of Commercial Vehicle Cabin

2019-04-02
2019-01-1034
During design and development of a cabin for any commercial vehicle, meeting the strength requirements of front impact as per Indian regulation (AIS-029) is a very critical milestone. AIS-029 regulation consists of three destructive tests, i.e. Front Impact Test (Test A), Roof Strength (Test B) and Rear Wall Strength (Test C). Study of energy absorbing front cabin mount, its stiffness balance with chassis and CAE correlation with physical test is demonstrated in this study. [1]
Technical Paper

Virtual Simulation of Door Slam Test, Study of Relative Sensitive Parameters and Correlation with Physical Test

2019-01-09
2019-26-0275
Door slam test is one of the important durability tests in door design and development. Door requires to meet certain performance requirements like it should close properly (no metal to metal contact), there should not be any leakage, and closing operation should be smooth & with minimal effort and it should survive the life of the vehicle. Virtual simulation of door slam test, correlation with physical test results and effect of various parameters like seals stiffness are demonstrated in this study. Slam Analysis was carried out in LS-Dyna solver before physical test. This not only helped in avoiding initial structural design flaws, but also helped us in deciding door latch position, effect of mass distribution in the door and study of force distribution between primary seal, secondary seal and door latch. Primary and secondary seals played a critical role in the analysis. An intended length of both the seals was tested first to get its stiffness curve.
Technical Paper

Fluid Structure Interaction Simulation of Automotive Fuel Tank Sloshing using Nonlinear Fluid Properties

2015-01-14
2015-26-0240
In commercial vehicles which generally have large capacity fuel tank, sloshing of fuel and its effect on the tank structure is very important aspect during fuel tank design. Dynamic pressures exerted by the fuel on baffles, end plates and tank shell during sloshing can lead to structural failures and fuel leakage problems. Fluid structure interaction simulation of automotive fuel tank sloshing and its correlation with physical test is demonstrated in this study. During physical sloshing test of 350 L fuel tank, cracks were observed on center baffle and spot weld failures developed on fuel tank shell. Same sloshing test was simulated for one sloshing cycle using fluid structure interaction approach in LS Dyna explicit FE solver. Water was used instead of fuel. Mesh free Smoothed Particle Hydrodynamics (SPH) method is used to represent water as it requires less computational time as compared to Eulerian or ALE method.
X