Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

New Simulation Methodology for Improved Visual Interaction between Physical Test and CAE in Seat Anchorage Test

2016-02-01
2016-28-0226
For effective occupant protection, automotive vehicle structure needs to be developed for seat anchorage test to prevent the failure of seat anchorages during high speed impacts. Seat anchorages (SA) certification test is mandatory for M & N category vehicles in India. Conventional way of testing automotive vehicle structures for seat anchorage test is using deceleration sled with the help of bungee ropes. Deceleration pulse generated from the physical test is used as a loading input in the current CAE process. With the current CAE method, final deformation of the vehicle structure looks similar to physical test, however, the vehicle visual interactions differ significantly during the deformation event. In the current study, a modified loading methodology is proposed to match both the final deformation as well as vehicle visual interactions. Loading and boundary conditions of physical test were understood in detail with the help of simple free body diagrams.
Technical Paper

Failure Correlation and CAE Based Design Development for Seat Belt Anchorage as per AIS-015

2015-01-14
2015-26-0166
For the purpose of effective occupant restraint, seat belt anchorage test is devised to prevent any failure at the anchorage locations during vehicle crash. In India Seat Belt Anchorages (SBA) certification test is mandatory for M and N types of category vehicles with regards to forward and rearward facing seats in the vehicle. During the development phase failure at seat anchorage location was observed in physical test, which resulted in vehicle not meeting the regulatory requirement. This phenomenon of anchorage failure was captured through Finite Element (FE) simulations and correlation was done to understand the root cause of failure for future development. Computer Aided Engineering (CAE) based design proposals were developed by considering various parameters which influence the load path and force distribution at seat belt and seat anchorage locations.
X