Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Towards the Direct Evaluation of Turbine Isentropic Efficiency in Turbocharger Testing

2016-04-05
2016-01-1033
Turbocharging is playing today a fundamental role not only to improve automotive engine performance, but also to reduce fuel consumption and exhaust emissions for both Spark Ignition and diesel engines. Dedicated experimental investigations on turbochargers are therefore necessary in order to get a better understanding of its performance. The availability of experimental information on realistic turbine steady flow performance is an essential requirement to optimize engine-turbocharger matching calculations developed in simulation models. This aspect is more noticeable as regards turbine efficiency, since its swallowing capacity can be accurately evaluated through the measurement of mass flow rate, inlet temperature and pressure ratio across the machine. Actually, in the case of a turbocharger turbine, isentropic efficiency directly evaluated starting from measurement of thermodynamic parameters at the inlet and outlet sections can give significant errors.
Technical Paper

Heat Transfer Effects on Performance Map of a Turbocharger Compressor for Automotive Application

2015-04-14
2015-01-1287
In the last few years, the effect of diabatic test conditions on compressor performance maps has been widely investigated leading some authors to propose different correction models. The accuracy of performance maps constitutes the basis of the turbocharger matching with the engine, for which 1D procedures are more and more adopted. The classical quasi-steady approach generally used is based on the employment of compressor and turbine characteristic maps assuming adiabatic turbocharger conditions. The aim of the paper is to investigate the effect of heat transfer phenomena on the experimental definition of turbocharger maps, focusing on compressor performance. This work was developed within a collaboration between the Polytechnic School of the University of Genoa and CRITT M2A. The compressor steady flow behavior was analyzed through tests performed on different test rigs operating at the University of Genoa and at CRITT M2A, under various heat transfer conditions.
X