Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Reduced Order Metamodel Development Framework for NVH

2022-03-29
2022-01-0219
During the design conception of an automobile, typically low-fidelity physics-based simulations are coupled with engineering judgement to define key architectural components and subsystems which limits the capability to identify NVH issues arising from systems interaction. This translates to non-optimal designs because of unexplored design opportunities and therefore, lost business efficiencies. The sparse design information available during the design conception phase limits the development of representative higher fidelity physics-based simulations. To address that restriction on design optimization opportunities, this paper introduces an alternate approach to develop reduced order predictive models using regression techniques by harnessing historical measurement and simulation data. The concept is illustrated using two driveline NVH phenomenon: axle whine and take-off shudder.
Journal Article

Methods to Find Best Designs Among Infeasible Design Data Sets for Highly Constrained Design Optimization Problems

2016-04-05
2016-01-0299
In recent years, the use of engineering design optimization techniques has grown multifold and formal optimization has become very popular among design engineers. However, the real world problems are turning out to be involved and more challenging. It is not uncommon to encounter problems with a large number of design variables, objectives and constraints. The engineers’ expectation, that an optimization algorithm should be able to handle multi-objective, multi-constrained data is leading them to apply optimization techniques to truly large-scale problems with extremely large number of constraints and objectives. Even as newer and better optimization algorithms are being developed to tackle such problems, more often than not, the optimization algorithms are unable to find a single feasible design that satisfies all constraints.
Technical Paper

Application of Hybrid Optimization Algorithm to Automotive Design Problems and Performance Comparison with Other Standard Optimizers

2015-04-14
2015-01-1355
With the increase in computational capability, there is an increase in classes of engineering optimization problems that are considered solvable. Not all problems benefit from similar types of approaches when searching for an optimal solution. Some have objective functions that can be described as largely unimodal while others have complex behavior with multiple local optima. Further, there are problems that have behavior that is not clearly apparent due to the involvement of CAD/CAE tools and high number of inputs/factors. There has been a push to combine dissimilar optimization approaches in order to tackle such hard-to-solve problems for a variety of reasons. One such combination is the “Hybrid” optimization algorithm developed by ESTECO for their commercial optimization software “modeFRONTIER”. This paper gives the reader some examples and results from problems where the Hybrid algorithm has proved to be a worthy choice.
Technical Paper

Comparing Robust Design Optimization and Reliability Based Optimization Formulations for Practical Aspects of Industry Problems

2015-04-14
2015-01-0471
Need for accounting Robustness and Reliability in engineering design is well understood and being researched. However, the actual practice of applying robustness and reliability methods to high fidelity CAE based simulations, especially during optimization is just starting to gain traction in last few years. Availability of computing power is helping the use of such methods, but, at the same time the demand for modeling stochastic behavior with high fidelity CAE simulations and considering large number of stochastic variables still makes it prohibitive. Typically, Robust Design Optimization (RDO) formulations calculate mean and standard deviation of responses based on sampling. On the other hand Reliability Based Design Optimization (RBDO) formulations have been using methods like First Order Reliability Method (FORM) or Second Order Reliability Method (SORM) which require nested optimization to evaluate joint probability distribution and reliability factor.
X