Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Deformation and Failure Behavior of Cylindrical Lithium-Ion Batteries Subjected to Mechanical Loading

2020-09-25
2020-28-0484
It is of critical importance to understand the failure behavior of Lithium-ion batteries subjected to mechanical loading order to improve crash safety of electric vehicles. The deformation of battery pack during collision/crash results in catastrophic events and thus it becomes necessary to study the failure of the battery during such scenarios. The goal of this research was to understand the mechanical and electrical failure characteristics of cylindrical Lithium-ion cells subjected to deformation. This paper discusses on experimental investigations on material failure in the electrode assemblies i.e. the jellyroll of Li-ion batteries after mechanical loading which eventually leads to electrical failure, short circuit and at times violent thermal runaway scenarios.
Technical Paper

Fatigue Life Prediction of Induction Hardened Case Depth Specimens Made From 38MnVS6 Micro Alloyed Steel

2017-03-28
2017-01-0357
The application of induction hardening treatment plays a vital role for enhancing fatigue life of various automotive components. This will incorporate compressive residual stresses in the component at significant extent. In this paper, wide range of experiments have been carried out on Rotating Bending Fatigue (RBF) specimens made from 38MnVS6 micro alloyed steel with induction hardening up to three different case depths. The set of specimens are fatigue tested at fully reverse loading condition using rotating bending fatigue testing machine. Based on this study a surface treatment factor is evaluated. This surface treatment factor is used as an input for evaluating precise fatigue life of the specimen using FEA packages. The fatigue life evaluated using FEA is showing good agreement with the results obtained through tests on the actual specimens.
X