Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Pass by Noise Reduction on an Intermediate Commercial Vehicle

2018-06-13
2018-01-1535
A major activity of any new vehicle development program, is to meet legal requirements of local markets. Pass by noise (PBN) test is one of the standardized tests and is used to certify new vehicles/variants for their Noise emissions. Certification for noise emissions of commercial vehicles is achieved by measuring external sound levels according to procedures defined by standards such as IS: 3028 for Indian market. Before a physical proto-vehicle is assembled, various systems and subsystems are readily made available by suppliers off the shelf. During final design validation of the vehicle by mule-vehicle testing, PBN target compliance need be assured for all these systems in order to meet overall PBN target. The PBN on an Intermediate commercial vehicle (ICV) migrated to the latest Exhaust emission standard, was the subject of this study. This vehicle emitted PBN greater than accepted threshold.
Technical Paper

Interior Noise Refinement in an ICV Bus through Driveline Torsional Vibration Analysis

2018-06-13
2018-01-1472
With a push for urbanization across cities, there is an increased demand for mobility in public transportation especially buses which are provided through state transport undertakings. Hence, the expectations of this class of vehicles will be high in terms of quality and comfort to the passengers. The noise inside the passenger area of the bus becomes an important parameter, which sets apart a bus manufacturer from its competitors. The driveline of the bus is the system responsible for the transfer of power from engine to the wheels. The noise and vibration problems associated with it are detected only in the late stages of the design chain, when all its elements are tested together over a wide range of conditions. Since, calibration of engine and the selection of transmission is freezed in early stages, satisfying power and torque requirements, the only viable option left to address the problem is by optimizing the clutch parameters.
Technical Paper

A Systematic Approach Towards Engine Mounting System Vibration Isolation Performance Validation in Commercial Vehicles

2017-07-10
2017-28-1928
Engine mounts and mounting brackets play a critical role in determining NVH performance of a vehicle. A lot of work has been done in the area of virtual simulation using FE models to study engine mounting system performance and its impact on vehicle level performance. An overall approach towards engine mounting system validation at vehicle level is also very critical to validate simulation results in a prototype based on which further refinement work will be carried. In this paper a detailed procedure for engine mount and mounting bracket physical validation at vehicle level is presented. Various tests to be performed at vehicle level to quantify engine mount and mounting bracket performance parameters is discussed in detail along with measurement procedures and techniques. Test results are interpreted and its impact on overall performance is also explained. These test results will help design engineers to further improve engineering parameters of mounts and mounting brackets.
Technical Paper

Passenger Vehicle Saloon Noise Prediction Using Acoustic Transfer Function Measurement Based Model

2017-06-05
2017-01-1862
New legislation’s, competition from global players and change in customer perception related to comfort parameters are key factors demanding manufactures to design and manufacture vehicles with very low saloon noise levels. The main causes for higher noise levels at passenger saloon compartment can be attributed to source noises (Powertrain, Driveline, Intake and Exhaust etc.), acoustic isolation and structural sensitivity of the body. Out of all above parameters, powertrain noise and acoustic isolation are two critical parameters effecting interior noise performance. This paper is an attempt to explain acoustic source contribution analysis through transfer function measurement in a passenger vehicle. Acoustic transfer function between engine bay and passenger ear level was measured using reciprocity technique (reciprocal method) with reference source placed at various locations inside the vehicle.
Technical Paper

Identification and Reduction of Whistling Noise in Passenger Vehicle

2014-09-30
2014-01-2317
The demand for comfort level in commercial vehicles is steadily increasing. Hence, fine-tuned performance parameters and attributes are required to fulfill the expectations from these vehicles. Refinement of noise and vibration without affecting performances of sub-systems and components has become extremely challenging with increasing customer requirements. This paper presents an approach to identify and reduce the high level whistling noise that was perceived in the passenger compartment while the vehicle was accelerated above 50 kmph. Interior noise measurements in static engine run-up condition reveal that the whistling noise is of specific order. Since, whistling noise is related to aerodynamic response of components, engine cooling fan, turbo charger, alternators and compressors were suspected. Using order tracking and near field measurements, HVAC alternator was confirmed as the main cause for whistling noise.
X