Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Analysis of Thermal Efficiency Improvement of a Highly Boosted, High Compression Ratio, Direct-Injection Gasoline Engine with LIVC and EIVC at Partial and Full Loads

2015-09-01
2015-01-1882
The improvement mechanism of fuel consumption at partial and full loads of a boosted direction-injection gasoline engine with the elevated geometrical compression ratio and Miller cycle by either early or late intake valve closing (EIVC or LIVC) are analyzed based on the first law of thermodynamics and one dimensional engine simulation. An increase in geometric compression ratio increases the theoretical thermal efficiency for all the operating loads, but deteriorates the fuel economy at full loads, owing primarily to the full-load knock limit. Use of Miller cycle improves the fuel economy for both the partial and full load operations by reducing the pumping loss and optimizing the combustion phasing, respectively. A comparison between EIVC and LIVC on the influencing factors on the thermal efficiency at the partial load shows that EIVC leads to higher mechanical efficiency and less heat transfer loss than LIVC, and hence its efficiency improvement is superior over LIVC.
Technical Paper

Optimization of Compression Ratio of a Boosted PFI SI Engine with Cooled EGR

2014-10-13
2014-01-2552
This paper studies the effect of cooled EGR on fuel consumption and anti-knock performance of a boosted port fuel injection (PFI) SI engine. Experimental results show that the cooled EGR increases the thermal efficiency by 2%∼18% depending on the operation conditions. Compared to low load operations, more improvements of the thermal efficiency are obtained at higher loads, primarily owing to the enhanced anti-knock performance, advanced combustion phasing, elimination of fuel-rich operations as well as reduced heat transfer loss with cooled EGR. The anti-knock performance of cooled EGR provides further potential to improve the thermal efficiency by increasing the compression ratio. To this end, a 1-D thermodynamic model of the engine is built and calibrated using the GT-Power code. A knock prediction correlation considering EGR is developed and validated with the experimental data.
X