Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Journal Article

Effects of Entrapped Gas within the Fluid on the Stiffness and Damping Characteristics of a Hydro-Pneumatic Suspension Strut

2017-03-28
2017-01-0411
This study is aimed at characterizing the nonlinear stiffness and damping properties of a simple and low cost design of a hydro-pneumatic suspension (HPS) that permits entrapment of gas into the hydraulic fluid. The mixing of gas into the oil yields highly complex variations in the bulk modulus, density and viscosity of the hydraulic fluid, and the effective gas pressure, which are generally neglected. The pseudo-static and dynamic properties of the HPS strut were investigated experimentally and analytically. Laboratory tests were conducted to measure responses in terms of total force and fluid pressures within each chamber under harmonic excitations and nearly steady temperature. The measured data revealed gradual entrapment of gas in the hydraulic fluid until the mean pressure saturated at about 84% of the initial pressure, suggesting considerably reduced effective bulk modulus and density of the hydraulic fluid.
Technical Paper

Analysis of a Flow Volume Regulated Frame Steering System and Experimental Verifications

2015-09-29
2015-01-2740
The articulated frame steering (AFS) systems are widely implemented in construction, forestry and mining vehicles to achieve enhanced maneuverability and traction performances. The kinematic and dynamic performances of articulated steered vehicles are strongly influenced by properties of the frame steering system. In this paper, a flow volume regulated frame steering system is described and analytically modelled. The analytical model of the steering system is formulated in conjunction with yaw-plane model of a 35 tonnes mining vehicle to investigate steady as well as transient responses of the steering system and the vehicle. A field test program was undertaken to measure responses of the steering system and the vehicle under nearly constant speed turning as well as path-change maneuvers.
X