Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Investigation of Cylinder Deactivation and Variable Valve Actuation on Gasoline Engine Performance

2014-04-01
2014-01-1170
Increasingly stringent regulations on gasoline engine fuel consumption and exhaust emissions require additional technology integration such as Cylinder Deactivation (CDA) and Variable valve actuation (VVA) to improve part load engine efficiency. At part load, CDA is achieved by closing the inlet and exhaust valves and shutting off the fuel supply to a selected number of cylinders. Variable valve actuation (VVA) enables the cylinder gas exchange process to be optimised for different engine speeds by changing valve opening and closing times as well as maximum valve lift. The focus of this study was the investigation of effect of the integration of the above two technologies on the performance of a gasoline engine operating at part load conditions. In this study, a 1.6 Litre in-line 4-cylinder gasoline engine is modelled on engine simulation software and simulated data is analysed to show improvements in fuel consumption, CO2 emissions, pumping losses and effects on CO and NOx emissions.
Technical Paper

Variable Geometry Turbocharger Active Control Strategies for Enhanced Energy Recovery

2013-03-25
2013-01-0120
This paper describes the development of the control system for a new type of mechanical turbocharger, the Active Control Turbocharger (ACT). The main difference of ACT compared to its predecessor, the Variable Geometry Turbocharger (VGT), lies in the inlet area modulation capability which follows an oscillating (sinusoidal) profile in order to match as much as possible the similar profile of the emitted exhaust gases entering the turbine in order to capturing the highly dynamic, energy content existent in exhaust pulses. This paper describes the development of a new controller in an adaptive framework in order to improve the response of the ACT. The system has been modelled using a one-dimensional Ricardo WAVE engine simulation software and the control system which actuates the nozzle (rack) position is modelled in Matlab-Simulink and uses a map-based structure coupled with a PID controller with constant parameters.
Technical Paper

Effects of Mechanical Turbo Compounding on a Turbocharged Diesel Engine

2013-03-25
2013-01-0103
This paper presents the simulation study on the effects of mechanical turbo-compounding on a turbocharged diesel engine. A downstream power-turbine has been coupled to the exhaust manifold after the main turbocharger, in the aim to recover waste heat energy. The engine in the current study is Scania DC13-06, which 6 cylinders and 13 litre in capacity. The possibilities, effectiveness and working range of the turbo compounded system were analyzed in this study. The system was modeled in AVL BOOST, which is a one dimensional (1D) engine code. The current study found that turbo compounding could possibly recover on average 11.4% more exhaust energy or extra 3.7kW of power. If the system is mechanically coupled to the engine, it could increase the average engine power by up to 1.2% and improve average BSFC by 1.9%.
X