Refine Your Search

Search Results

Author:
Viewing 1 to 6 of 6
Technical Paper

Oxidation Stability Study of Biobased Lubricant Basestocks

2015-09-01
2015-01-2046
One of the concerns for biolubricants is the improvement of their oxidation resistance. In this paper the oxidative behavior of seven different types of biobased lubricants basestocks is examined. The aim was to study their relative oxidation stability and also to investigate their response to various antioxidants. The renewable lubricants were treated with four antioxidant additives at a concentration of 0.5% wt. and a comparative assessments of the latters' effectiveness in suppressing the oxidation rate was carried out. Alterations in the acid value were examined as well as relative changes of the oxidized samples by FTIR spectroscopy. The oxidation stability was assessed by employing a Rapid Small Scale Oxidation Test (RSSOT) apparatus according to the accelerated oxidation stability standard method ASTM D7545/EN16091. RSSOT is a relatively new method and thus the behaviour of biobased lubricants and antioxidant agents in this accelerated method has not been thoroughly examined.
Technical Paper

Monoglyceride Content in Marine Diesel Fuel-A Guide

2014-10-13
2014-01-2775
Problems with the low-temperature operability performance of biodiesel in blends with petroleum diesel are infrequent, but continue to limit the use of biodiesel during winter months. A troubling aspect of this problem is that in some cases precipitates above the blend Cloud Point (CP) have been detected and have led to plugging of fuel filters and subsequent engine stalling, as well as plugging of fuel dispenser filters. Many researchers found that the saturated monoglyceride content was a main component of the material that was found on plugged fuel filters, as well as traces of Saturated DiGlycerides (SDG), were also present on the plugged fuel filters. This is the reason which forced the organization of standardization to suggest a procedure in order to predict the content of the Saturated MonoGlycerides (SMG) even with uncertainty which can vary from −50% to +50%. The model which was used will be the same as that which was introduced in the Annex C of EN 14214+A1:2013.
Technical Paper

Assessment of the Oxidation Stability of Biodiesel Fuel using the Rancimat and the RSSOT methods

2014-10-13
2014-01-2758
For many years Rancimat was the only standardized method for measuring the oxidation stability of FAME and FAME/diesel blends. However this method is not applicable to pure conventional petroleum products and so the effect of FAME on diesel fuel stability could not be evaluated directly. Recently a Rapid Small Scale Oxidation Test (RSSOT) that covers the determination of the stability of biofuels and petroleum products was developed and standardized. In this study the oxidation stability of seven different types of FAMEs was assessed, either neat or blended with three types of ULSD fuel, by employing both the Rancimat and the RSSOT accelerated oxidation methods. The determinations from either test were analyzed and a comparative assessment of these two method was carried out.
Journal Article

Investigating “De Minimis” Level of Fatty Acid Methyl Esters (FAME) in Distillate Marine Gas Oil

2013-10-14
2013-01-2697
According to the existing maritime regulation, the marine diesel equipment will be necessary to operate with low sulfur marine fuels. Low Sulfur Middle Gas Oils (MGOs) often have a viscosity that is lower than that of Heavy Fuel Oil (HFO). The problems in diesel engines are mainly related to high pressure fuel pumps that depend on the fuel oil for their lubrication. A solution to that problem probably will be the addition of Fatty Acid Methyl Esters (FAME) as an additive to the fuel. On the other hand, for the purposes of International Standard ISO 8217:2012 in the case of distillate fuels it is recommended that “de minimis” level of FAME is recommended. “De minimis” level is determined approximately as the 0.1% volume of the fuel. In this study, Distillate Marine Diesel Oil with good lubricity performance was used blended with FAME fuel, according to national and European Standard (ELOT EN 14214), was used as an additive.
Technical Paper

Impact of Using Adulterated Automotive Diesel with White Spirit on the Performance of a Stationary Diesel Engine

2010-05-05
2010-01-1567
Air pollution caused by diesel emissions, especially NOx, particulate matter, carbon monoxide and unburned hydrocarbons, has been a noteworthy matter. In Europe and the United States, legislative efforts towards improving air quality not only lead manufacturers to develop and introduce further improved emission control systems, but also the trigger demanding requirements on the oil industry towards producing advanced fuels. Therefore, much work on the effects of fuel properties on the emissions and engine performance has been performed worldwide. The fuels produced by the refineries usually comply with the existing specifications. However, alterations in the fuel properties may occur through the supply chain to the service stations due to failures of the distribution system or adulteration with lower value and taxation fuels (heating oil, marine diesel or industrial solvents).
Technical Paper

Determination of Physicochemical Properties of Fatty Acid Ethyl Esters (FAEE) - Diesel Fuel Blends

2009-06-15
2009-01-1788
In this study, the transesterification process of 4 different vegetable oils (sunflower, rapeseed, olive oil and used frying oil) took place utilizing ethanol, in order to characterize the ethyl esters and their blends with diesel fuel obtained as fuels for internal combustion engines. All ethyl esters were synthesized using calcium ethoxide as a heterogeneous solid base catalyst. The ester preparation involved a two-step transesterification reaction, followed by purification. The effects of the mass ratio of catalyst to oil, the molar ratio of ethanol to oil, and the reaction temperature were studied on conversion of sunflower oil to optimize the reaction conditions in both stages. The rest of the vegetable oils were converted to ethyl esters under optimum reaction parameters. The optimal conditions for first stage transesterification were an ethanol/oil molar ratio of 12:1, catalyst amount (3.5%), and 80 °C temperature, whereas the maximum yield of ethyl esters reached 80.5%.
X