Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

FEA Analysis and Correlation of Thermo-Mechanical Deformations of a Disc Brake Rotor

2015-01-14
2015-26-0206
Brake is a critical safety aspect of an automobile and hence its failsafe design is of prime importance. Modern vehicles, especially cars and SUVs, with high speed and high acceleration capacities require the braking system also to be equally robust and stable in all critical driving conditions. Typically, during braking, front brakes take up higher torque than rear brakes due to vehicle dynamics and associated load transfers. Generally, these are disc brakes using cast iron rotors. Rotor absorbs heat energy generated during braking and dissipates it into components in its vicinity and largely, into surrounding air. Due to stringent target of overall reduction in weight and cost of an automobile, rotors are fairly optimized on these aspects with a balance of needed braking performance. This optimization in weight of rotor limits the thermal absorption equally of rotor i.e heat dissipation.
Technical Paper

Effect of Thermal Behavior of Friction Materials on Brake Squeal

2014-09-28
2014-01-2514
Brake noise is an emerging concern in Indian Auto-industry; with brake squeal being the most evident form of brake NVH. Squeal noise generation attributes to many parameters including kinematics of braking parts during pressure application, structural dynamic behavior which in turn depends on coupling at resonant frequencies of different parts of a brake assembly, material of brake parts, operating clearances in the mating parts etc. The genesis of brake squeal lies in the generation of unstable frictional forces during braking event. These frictional forces induce uncontrolled amplification of brake parts vibration, which in turn tend to produce perceivable sound or noise. The magnitude this vibration induced squeal depends on co-efficient of friction, braking pressure, speed and temperature of friction material.
X