Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Experimental Investigations of Vehicle Base Drag Reduction Using Passive Jet Boat-Tail Flow Control

2014-09-30
2014-01-2448
This study is focused on the detailed experimental investigation of jet boat-tail (JBT) passive flow control bluff body models to reduce the base pressure drag. The JBT technique is employed through an open inlet at the leading edge of the bluff body along with a circumferential jet at the trailing edge in order to energize the base flow using the high kinetic energy flow from freestream. As a consequence, entrainment of the main flow into base flow region is initiated earlier downstream. A reduction in the turbulent fluctuation of the wake can be observed in addition to a decrease of the recirculation region velocity. Using 2D/3C Particle Image Velocimetry (PIV), two models with different inlet sizes are tested. The large flow rate model is designed with an inlet area 4.7 times greater than the other JBT prototype. The wind tunnel experimental results show a substantial reduction in the wake width and depth for the two models, which indicates a significant drag reduction.
Journal Article

Low Drag Automotive Mirrors Using Passive Jet Flow Control

2014-04-01
2014-01-0584
1 This paper introduces and proves a novel automotive mirror base drag reduction method using passive jet flow control. The new concept is to open an inlet at the front part of the mirror, introduces the airflow via a converging duct, and ejects the jet surrounding the mirror surface at an angle toward the center of the mirror. The jet harnesses the energy from the free stream by jet mixing with the main flow via large coherent structures, entrains the main flow to energize the base flow, reduces the wake size and turbulence fluctuation, and ultimately significantly decreases the drag. Above phenomena are proved by wind tunnel testing with PIV and drag force measurement and CFD large eddy simulation (LES) calculation. Two jet mirrors with different inlet areas are studied. The jet mirror tunnel 1 has a smaller inlet area, and the jet mirror tunnel 2 has a 4.7 times larger inlet area. The wind tunnel testing is only done for the baseline and jet mirror tunnel 1.
X