Refine Your Search

Search Results

Author:
Viewing 1 to 6 of 6
Technical Paper

A Collision Avoidance Strategy Based on Inevitable Collision State

2022-09-19
2022-01-1170
This paper proposed a collision avoidance strategy that take over the control of ego vehicle when faced with urgent collision risk. To improve the applicability of collision avoidance strategy in complex scenarios, the theory of ICS (Inevitable Collision State) is introduced to evaluate the collision risk and compute the trigger flag of the system, and vehicle dynamic is taken into account when modeling ego vehicle to predict ego vehicle’s following moving. Vehicle specific characteristics including reaction time of the braking system and the braking force increasing process are taken into account. In order to reduce injury caused by collision accidents and minimize disruption to drivers, slight steering is added on top of emergency braking. The direction of the steering angle is determined according to IM (Imitating Maneuvers) The flow chart of the strategy is presented in the paper.
Technical Paper

Speed Control of BLDC Motor in Electro-Hydraulic Power Steering System Based on Fuzzy-PI Controller

2018-04-03
2018-01-0698
Electro-hydraulic power steering system (EHPS) uses the motor as the power source instead of the engine to assist drivers to steer. Compared with traditional hydraulic power steering system (HPS), EHPS system has a better performance in energy saving and driving feeling. In EHPS system, the speed control of the motor determines the performance of the whole system. In this paper, a speed control system of brushless direct current (BLDC) motor based on a Fuzzy-PI controller is established. In addition to the function to adjust speed by adjusting voltage, field weakening is utilized to get a wider speed range, so that the EHPS system has a better performance.
Technical Paper

Design and Testing of a Novel Multiple-Disc Magneto-Rheological Clutch Applied in Vehicles

2015-04-14
2015-01-1133
In recent years, Magneto-rheological (MR) fluid has drawn a lot of attention for its applications in a variety of torque transmission devices, such as brakes, clutches and soft starters of mechanical equipment. Compared with the conventional clutch of vehicle, the novel MR clutch has the advantages of fast response with electronic signal, accuracy control and simple structure without mechanical wear in plates. Besides, MR clutch may be helpful to fast response of vehicle in some situation. Nowadays, most applications of MR fluids in the torque transmission field mainly are used in low-power situation. As far as we know, the proposed effective methods enhancing the output torque of MR devices will increase either the number of fluid gaps or the magnetic field in the MR fluid. This article presents a novel vehicle clutch utilizing magnetorheological fluid and multiple-disc structure.
Technical Paper

DEHB (Distributed Electro-hydraulic Braking System) Having a Holding Function

2015-03-10
2015-01-0017
Many types of brake by wire systems have been developed in past years, such as EMB (Electro-mechanical Brake) [1, 2], DEHB (Distributed Electro-hydraulic Braking System) [3] and EWB (Electric Wedge Brake) [4]. When the vehicle need braking in long period such as waiting for traffic light or downhill braking in those brake systems, the current will sustain very long time with very high level. This current will result in high temperature in motor, and will damage the power supplier. When a new DEHB is developing, a holding function is added in this DEHB. The holding function is self-energized when holding the brake, and automatic released after the brake. Advantageously, after activation of the holding function, the current delivered to the motor for braking is substantially decreased, especially, will be zero when the brake torque is not need to adjust.
Technical Paper

Design, Modeling and Simulation of a New Compact Electro-Hydraulic Brake System

2014-09-28
2014-01-2535
With the advantages of free from engine vacuum, wheel cylinder pressure decoupled from the brake pedal and can be regulated individually and precisely, the brake-by-wire system has a huge application potential in vehicles, especially in electric vehicles (EV) and hybrid electric vehicles (HEV). Electro-hydraulic Brake system is the first approach towards brake-by-wire technology. This paper proposed a new compact EHB, aiming at decreasing the size, volume and cost without compromise of performance. The main components of the proposed EHB are pedal simulator, motor pump, accumulator and eight solenoid valves. An authentic model of the EHB and other key components of the brake system were established based on the test data from the test bench. A control algorithm using Round-Robin scheduling was presented to regulate the fluid pressure. Some parameters of the components were discussed to research their effects on system performance.
Technical Paper

Design Concepts of the Four-Wheel-Independent Electro-Hydraulic Braking System

2014-09-28
2014-01-2537
The four-wheel-independent Electro-hydraulic Braking system (4WI EHB) is a wet type Brake-by-Wire system for passenger vehicle and is suitable for electric vehicle (EV) and hybrid electric vehicle (HEV) to cooperate with regenerative braking. This paper gives a review on the design concepts of the 4WI EHB from the following three aspects. 1. Hydraulic architectures. 2. Design concepts of the brake actuator. 3. Installation of the components on the vehicle. Simulations and experiments are carried out to further explore the performance of hydraulic backup and implicit hardware redundancy (IHR). A method to integrate the IHR with hydraulic backup without increasing the total amount of valves is proposed, making the IHR cost and weight competitive. By reviewing various design concepts and analyzing their advantages and drawbacks, a cost and weight competitive design concept of the 4WI EHB with good fail-safe and fault-tolerant performance is proposed.
X