Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Importance and Contribution of Alternate Fuels in India’s Green Mobility Story

2019-11-21
2019-28-2376
Indian automotive industry has witnessed never-seen-before push towards Green mobility from the Government of India (GOI). GOI has maintained a firm stature while leap-frogging from BS-IV to BS-VI and has backed up its intent with equally firm actions of providing the facilities, infrastructure and necessary support to industry. After a lot of initial resistance, the Auto manufacturers have taken up the challenge and are well paced towards meeting the target of 1st April, 2020. Due to many aspects such as commercial viability, wide range of expectation from different type of customer segments e.g. 2-wheeler, 3-wheelers, SCV, Light & MHCV and passenger car segments etc. the overall landscape of market in terms of product segmentation, Diesel-Petrol share pattern is poised to change. Parallel to this development, a wave of electric vehicle enthusiasts has hit the world which boasts of being the ultimate solution towards Green mobility.
Technical Paper

Optimization of EGR Cooler Bracket Weld Line through Combined Measurement and Simulation Approach

2016-02-01
2016-28-0110
High vibration stimulus is a characteristic of single cylinder diesel engines. The load carrier segment driven by single cylinder diesel engine operates on low running speeds and heavy load. This operating condition pushes the vibrations generated in the engine to extreme level making it challenging to design peripheral components. More-over, simulation of components involving welded joints becomes further more challenging as virtual representation of welded joint and prediction of its behaviour under high vibrations is difficult to model. Also, the behaviour of over-all design changes drastically when the position and orientation of welding seam is altered. Different weld seam positions under high vibration input may lead to varied mechanisms of weld seam opening and it changes the stress distribution on the mating component leading to different mechanics of failure.
Technical Paper

Improving Heat Transfer in Single Cylinder DI Engine through Optimization of Coolant Flow Distribution

2015-04-14
2015-01-1663
As one of the most complicated parts of an internal combustion Engine, cylinder head is directly exposed to high combustion pressures and temperatures. Cooling must be provided for the heated surfaces to avoid overheating. However over-cooling will cause lower overall efficiency and high emission. Therefore, an optimal design of the cooling system is required to maintain trouble-free operation of engine. For single cylinder naturally aspirated Compression Ignition (CI) engines, on account of space restrictions, designing of cooling jacket is very critical. Engineers invest a large amount of time and serious effort to optimize the flow through engine cooling jacket with limited detailed information of conducting flow and heat transfer. This paper therefore, investigates cooling performance of a single cylinder 510cc production diesel engine.
X