Refine Your Search

Search Results

Viewing 1 to 13 of 13
Journal Article

Study of Low Soot or Soot-Free Leaner Lifted Flame Combustion in a Light Duty Optical Engine

Previous experimental data obtained in constant volume combustion vessels have shown that soot-free diffusive flames can be achieved in a Diesel spray if the equivalence ratio at the flame lift-off location is below 2. The so-called Leaner Lifted-Flame Combustion (LLFC) strategy is a promising approach to limit the levels of in-cylinder soot produced in Diesel engines. However, implementing such strategies in light-duty engines is not straightforward due to the effects of charge confinement , non-steady boundary conditions and spray-spray interactions compared to the simplified configuration of a free-jet in a constant-volume combustion vessel. The present study aims at trying to gain a better understanding of the requirements in terms of injector and engine settings in order to reach the LLFC regime in a light-duty engine. Experiments were performed on a 0.5L single-cylinder optical engine.
Journal Article

Experimental and Numerical Investigations on the Mechanisms Leading to the Accumulation of Particulate Matter in Lubricant Oil

The accumulation of particulate matter in lubricant oil can become an important issue in Diesel engines where large amounts of Exhaust Gas Recirculation (EGR) are used at medium to high load operating conditions. Indeed, the transport and subsequent accumulation of particulate matter in the engine oil can negatively impact the oil lubricant properties which is critical to ensure mechanical durability and limit the vehicle Total Cost of Ownership (TCO) by reducing the servicing intervals. The objective of this investigation was to gain an improved understanding of the underlying mechanisms that are responsible for the accumulation of particulate matter in the lubricating oil, and ultimately provide design guidelines to help limit this phenomenon. The present study presents the development and validation of experimental and numerical tools used to investigate this phenomenon.
Journal Article

Optical Investigation of Dual-fuel CNG/Diesel Combustion Strategies to Reduce CO2 Emissions

Dual-fuel combustion strategies combining a premixed charge of natural gas and a pilot injection of diesel fuel offer the potential to reduce CO2 emissions as a result of the high Hydrogen/Carbon (H/C) ratio of methane gas. Moreover, the high octane number of methane means that dual-fuel combustion strategies can be employed on compression ignition engines without the need to vary the engine compression ratio, thereby significantly reducing the cost of engine hardware modifications. The aim of this investigation is to explore the fundamental combustion phenomena occurring when methane is ignited with a pilot injection of diesel fuel. Experiments were performed on a single-cylinder optical research engine which is typical of modern, light-duty diesel engines. A high-speed digital camera recorded time-resolved combustion luminosity and an intensified CCD camera was used for single-cycle OH*chemiluminescence imaging.
Technical Paper

Numerical and Experimental Investigation of Combustion Regimes in a Dual Fuel Engine

Among the new combustion concepts envisaged to meet future regulations, the Dual Fuel (DF) concept is considered to be an attractive strategy due to its potential to reduce CO2 emissions and engine-out pollutant emissions levels. A small quantity of high-cetane fuel (Diesel) is injected in the combustion chamber in order to ignite a homogeneous mixture of air and a highly volatile fuel (gasoline in our study). The DF concept has been shown to achieve improved engine thermal efficiency and low engine-out NOx and soot emissions. However, the physical mechanisms controlling DF combustion and in particular, determination of the predominant combustion regime(s) are not yet well understood. In this study, numerical simulations (CFD) and optical engine measurements are used to investigate Dual Fuel combustion.
Technical Paper

Experiments and Modeling of Flame/Wall Interaction in Spark-Ignition (SI) Engine Conditions

Dedicated experiments were performed in an optically-accessible, constant volume combustion vessel whose geometry and aerodynamic flow was representative of a pentroof SI engine combustion chamber. A detailed characterization of the flowfield was conducted in several near-wall regions where flame-wall interaction occurs using high-speed Particle Image Velocimetry (PIV). Simultaneous heat flux measurements were also performed at these same spatial locations. From a numerical point of view, current Reynolds Averaged Navier Stokes (RANS) or Large Eddy Simulation (LES) models take into account the effects of the wall on the flame however the effects of the turbulent flame-wall interaction on wall heat flux are not accounted for. Direct Numerical Simulations (DNS) of a 2D, premixed, steady-state V-flame were performed in order to aid the development and validation of a new model based on the flame surface density concept in order to take into account flame-wall interaction effects [1].
Technical Paper

Improving Emissions, Noise and Fuel Economy Trade-Off by using Multiple Injection Strategies in Diesel Low Temperature Combustion (LTC) Mode

Latest emissions standards impose very low NOx and particle emissions that have led to new Diesel combustion operating conditions, such as low temperature combustion (LTC). The principle of LTC is based on enhancing air fuel mixing and reducing combustion temperature, reducing raw nitrogen oxides (NOx) and particle emissions. However, new difficulties have arisen. LTC is typically achieved through high dilution rates and low CR, resulting in increased auto-ignition delay that produces significant noise and deteriorates the combustion phasing. At the same time, lower combustion temperature and reduced oxygen concentration increases hydrocarbon (HC) and carbon oxide (CO) emissions, which can be problematic at low load. Therefore, if LTC is a promising solution to meet future emission regulations, it imposes a new emissions, fuel consumption and noise trade-off. For this, the injection strategy is the most direct mean of controlling the heat release profile and fuel air mixture.
Journal Article

Formation of Unburned Hydrocarbons in Low Temperature Diesel Combustion

Low temperature combustion is a promising way to reach low NOx emissions in Diesel engines but one of its drawbacks, in comparison to conventional Diesel combustion is the drastic increase of Unburned Hydrocarbons (UHC). In this study, the sources of UHC of a low temperature combustion system were investigated in both a standard, all-metal single-cylinder Diesel engine and an equivalent optically-accessible engine. The investigations were conducted under low load operating conditions (2 and 4 bar IMEP). Two piston bowl geometries were tested: a wall-guided and a more conventional Diesel chamber geometry. Engine parameters such as the start of injection (SOI) timing, the level of charge dilution via exhaust gas re-circulation (EGR), intake temperature, injection pressure and engine coolant temperature were varied. Furthermore, the level of swirl and the diameter of the injector nozzle holes were also varied in order to determine and quantify the sources of UHC.
Journal Article

A Comparison of Combustion and Emissions Behaviour in Optical and Metal Single-Cylinder Diesel Engines

Single cylinder optical engines are used for internal combustion (IC) engine research as they allow for the application of qualitative and quantitative non-intrusive, diagnostic techniques to study in-cylinder flow, mixing, combustion and emissions phenomena. Such experimental data is not only important for the validation of computational models but can also provide a detailed insight into the physical processes occurring in-cylinder which is useful for the further development of new combustion strategies such as gasoline homogeneous charge compression ignition (HCCI) and Diesel low temperature combustion (LTC). In this context, it is therefore important to ensure that the performance of optical engines is comparable to standard all-metal engines. A comparison of optical and all-metal engine combustion and emissions performance was performed within the present study.
Journal Article

Advanced Injection Strategies for Controlling Low-Temperature Diesel Combustion and Emissions

The simultaneous reduction of engine-out nitrogen oxide (NOx) and particulate emissions via low-temperature combustion (LTC) strategies for compression-ignition engines is generally achieved via the use of high levels of exhaust gas recirculation (EGR). High EGR rates not only result in a drastic reduction of combustion temperatures to mitigate thermal NOx formation but also increases the level of pre-mixing thereby limiting particulate (soot) formation. However, highly pre-mixed combustion strategies such as LTC are usually limited at higher loads by excessively high heat release rates leading to unacceptable levels of combustion noise and particulate emissions. Further increasing the level of charge dilution (via EGR) can help to reduce combustion noise but maximum EGR rates are ultimately restricted by turbocharger and EGR path technologies.
Technical Paper

Tracer LIF Visualisation Studies of Piston-Top Fuel Films in a Wall-Guided, Low-NOx Diesel Engine

Tracer laser induced fluorescence (LIF) imaging of piston-top fuel films has been performed within the combustion chamber of an optically-accessible, single cylinder Diesel engine. The first objective of the study was to adapt the tracer LIF technique so as to perform in-cylinder imaging of the fuel films under reacting (i.e. combustion) conditions. The results obtained in a wall-guided, combustion chamber operating under highly dilute, Diesel low temperature combustion (LTC) conditions reveal the significant presence of late-cycle piston-top fuel films. Furthermore, it is believed that these fuel films contribute to engine-out hydrocarbon (HC) emissions via a mechanism of flash boiling. An attempt was also made to evaluate the role of fuel volatility on fuel film lifetimes. This was achieved by using a 50/50 fuel mixture of two single component fuels whose boiling points correspond to moderately high and low volatility components of standard Diesel fuel.
Technical Paper

A Study of Combustion Structure and Implications on Post-Oxidation Under Homogeneous and Stratified Operation in a DISI Engine

An experimental investigation into the structure and flame propagation characteristics of stratified and homogeneous combustion has been performed in an optically-accessible, direct-injection spark ignition (DISI) engine using OH planar laser-induced fluorescence (PLIF) imaging. Homogeneous and stratified operation was achieved by employing either early or late injection timing strategies during the intake or compression stroke respectively. Planar LIF OH images obtained revealed that for stratified operation, the 3D structure of the combustion zone is highly inhomogeneous and is predominantly due to high fuel concentration gradients which are formed as a result of local fuel mixture stratification. The images reveal a combustion structure which suggests that the flame propagation pathway is ultimately determined by the presence of these local fuel mixture inhomogeneities.
Technical Paper

LIF Imaging of Auto-ignition and Combustion in a Direct Injection Diesel-fuelled HCCI Engine

Planar laser-induced fluorescence (LIF) imaging of formaldehyde (CH2O) and OH has been performed to investigate the homogeneous charge, compression ignition (HCCI) combustion process inside the piston bowl of an optically-accessible, direct injection Diesel-fueled HCCI engine. In particular, the effects of charge dilution and the adoption of single and split injection strategies on the two-stage HCCI combustion have been studied. Results obtained show that the level of exhaust gas recirculation (EGR) significantly affects the pre-combustion or so called cool flame phase during which formaldehyde is detected. The cool flame phasing as indicated by the formation of this intermediate species is unaffected by the EGR level however, auto-ignition timing which marks the start of main combustion is inevitably advanced following a reduction in EGR and this ultimately determines the formaldehyde lifetime and consequently the degree of homogeneity attained.
Technical Paper

Mixture Preparation and Combustion via LIEF and LIF of Combustion Radicals in a Direct-Injection, HCCI Diesel Engine

The influence of piston geometry on the in-cylinder mixture distribution and combustion process in an optically-accessible, direct injection HCCI Diesel engine has been investigated. A new, purpose-designed piston which allows optical access directly into the combustion chamber bowl permitted the application of a number of optical diagnostic techniques. Firstly, laser-induced exciplex fluorescence (LIEF) has been applied in order to characterize the fuel spray and vapor development within the piston bowl. Subsequently a detailed study of the auto-ignition and two-stage Diesel HCCI combustion process has been conducted by a combination of direct chemiluminescence imaging, laser-induced fluorescence (LIF) of the intermediate species formaldehyde (CH2O) which is present during the cool flame and LIF of the OH radical later present in the reaction and burned gas zones at higher temperature.