Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Assessment of Abdominal Loading to Pregnant Model Setup during Vehicle Frontal Impact for Different Lap Belt Positions

2022-03-29
2022-01-0847
The paper addresses the safety of a pregnant passenger from an injury risk point of view regarding to the position of the seatbelt’s lap part. The finite element based-pregnant abdomen model is incorporated into the simplified rigid body-based female body model. The study was done in two steps. Firstly, a female model was validated in the frontal sled test to ensure its biofidelity for this particular purpose. Secondly, a fully deformable abdomen was added to create a pregnant female model. Such model was positioned in a deformable frontal seat and restrained by a safety system such as a three-point seat belt and airbag to simulate the frontal sled test scenario. A deceleration pulse corresponding to a frontal impact related to two impact velocities (30 km/h and 50 km/h) is applied and the restraint system performance is assessed with the focus on the fetus and female injury risk.
Technical Paper

Novel Approach in Vehicle Front-End Modeling for Numerical Analyses of Pedestrian Impact Scenarios

2017-03-28
2017-01-1451
In this paper a novel approach in developing a simplified model of a vehicle front-end is presented. Its surface is segmented to form an MBS model with hundreds of rigid bodies connected via translational joints to a base body. Local stiffness of each joint is calibrated using a headform or a legform impactor corresponding to the EuroNCAP mapping. Hence, the distribution of stiffness of the front-end is taken into account. The model of the front-end is embedded in a whole model of a small car in a simulation of a real accident. The VIRTHUMAN model is scaled in height, weight and age to represent precisely the pedestrian involved. Injury risk predicted by simulation is in correlation with data from real accident. Namely, injuries of head, chest and lower extremities are confirmed. Finally, mechanical response of developed vehicle model is compared to an FE model of the same vehicle in a pedestrian impact scenario.
Technical Paper

Stature Based Approach towards Vehicle Safety

2015-01-14
2015-26-0209
The paper contributes to the field of vehicle safety technology by the virtual approach using biomechanical virtual human body models. The goal of the paper is to exploit the previously developed scaling algorithm to create several virtual human models of a given age and body proportions and to assess the impact analysis using the sensitivity approach. Based on a validated reference model, the previously developed scaling algorithm develops virtual human body models for given height, mass, age and gender. Particular body segments are scaled based on the anthropometrical database concerning the body dimensions taking also percentiles into account. The body stiffness is driven by age dependent flexindex. Several virtual models of human bodies representing particular cadavers were generated via the automatic scaling algorithm. The frontal sled test response of three models was successfully compared to the available experimental data previously.
Technical Paper

Development of 6 Years Old Child Virtual Model by Automatic Scaling

2014-03-24
2014-01-2028
Traffic accidents cause one of the highest numbers of severe injuries in the whole population. The numbers of deaths or seriously injured citizens prove that traffic accidents and their consequences are still a serious problem to be solved. A lot of effort is devoted to both passive and active safety systems development. The transportation standards usually define safety requirements by regulations (e.g. ECE-R94, 96/79/EC and ECE-R95, 96/27/EC in Europe) with specific dummies for children to be used. The dummies include hardware sensors for monitoring accelerations, loads and other signals and each dummy is developed for a specific scenario, but there are limitations of these dummies, such as only a specific age or calibration just for a specific test.
X