Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Role of Springs in Exhaust Brake Assembly and its Contribution in Dynamic Analysis

2015-06-15
2015-01-2233
Generally the brake system products are mounted on chassis with brackets which are subjected to dynamic loads due to road undulations. Exhaust brake is used to restrict the engine exhaust flow passage and thereby creates a back pressure in the engine for reducing the engine speed. This in turn reduces the vehicle speed. This is widely used in the vehicles operating in the hilly areas. This product is mounted on the exhaust passage and the air cylinder sub-assembly which actuates the exhaust brake is mounted on a bracket. Automotive industries perform durability tests on vehicles to reduce the failure on end-user environment. An assembly which has cleared the durability test got failed on addition of a spring into the assembly. The inclusion of spring is for enhancing the performance of the overall assembly.
Technical Paper

Modelling and Simulation of Door Control System

2015-01-14
2015-26-0014
A Door Control System is being used for controlling doors in buses running in urban/suburban areas as a part of safety requirement and to protect the passengers. The opening and closing of the doors will be in logical sequence depending upon the driver input, vehicle speed and the emergency conditions. To achieve this logic the door control system consists of an ECU, pneumatic valves, pressure sensors and switches. To predict the performance of this system under various operating conditions, the entire system is being modeled in one of the commercially available multi-domain physical modeling software employing bond graph technique and lumped system and the performance is predicted. This paper deals with the modeling and simulation of entire Door Control System.
Technical Paper

Modeling and Simulation of Dynamic Behavior of Pneumatic Brake System at Vehicle Level

2014-09-28
2014-01-2494
The highest goal for a good brake system design must be that the vehicle when braking obtains a shorter stopping distance does not leave the track and remains steerable. From the perspective of road traffic, safety and for avoidance of accidents the time and location of a vehicle coming to halt after braking are crucial. In heavy commercial vehicle having longer wheel base, pneumatic brake system is being used.The pneumatic brake system configuration has to be designed in such a way that the response time should meet the safety regulation standards and thereby achieve shorter stopping distance and vehicle stability. Validating the effectiveness of pneumatic brake system layout experimentally on stopping distance and vehicle stability is expensive. This paper deals with the modeling of a typical heavy commercial vehicle along with the entire pneumatic brake system layout with actuating valves, control valves and foundation brakes to predict the dynamic behavior and stopping distance.
X