Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Thermal Performance Prediction of Jet Lubricated Transmission System using Computational Methods

2017-10-08
2017-01-2437
The jet lubrication method is extensively used in the constant mesh high performance transmission system operating at range of speeds though it affects mechanical efficiency through spin power loss. The lubrication jet has a key role to maintain the meshing gears at non-fatal thermal equilibrium by effectively dissipating the heat generated to the surrounding. Heat transfer coefficient (HTC) is the indicator of the thermal behavior of the system, which provides great insight of efficient lubrication system that needs to be employed for prescribed type of transmission. In this study, a segment of the transmission unit which constitutes a gear pair is used for the simulation. Parametric study is carried out by considering the critical parameters affecting the thermal performance such as lubrication jet flow rate and rotational motions of the gears with speeds and temperatures.
Journal Article

CFD based Prediction of Spin Power Loss of Automotive Differential System

2015-09-29
2015-01-2783
In an automotive power train system, the differential gear system plays a vital role of enabling the vehicle to transfer the engine torque to the wheels. The differential system consists of complex system of gears which are meshed with each other. Effective lubrication of the differential system ensures that the metal to metal contact between the gears is avoided. In addition, the lubricants also acts as a thermal medium to effectively dissipate the heat produced due to frictional resistances. For dipped lubrication system, the use of lubrication oil leads to a loss of transmission power, and the loss increases with increasing rotational speeds. Prediction and an understanding of the transmission loss inside the differential system is important as it provides a means to increase the power transmission efficiency. In addition, it provides insights to optimize the lubrication methods, gear profile, and gear housings.
Technical Paper

Design of Experiments Enabled CFD Approach for Optimizing Cooling Fan Performance

2014-04-01
2014-01-0658
Increasing demands on engine power to meet increased load carrying capacity and adherence to emission norms have necessitated the need to improve thermal management system of the vehicle. The efficiency of the vehicle cooling system strongly depends on the fan and fan-shroud design and, designing an optimum fan and fan-shroud has been a challenge for the designer. Computational Fluid Dynamics (CFD) techniques are being increasingly used to perform virtual tests to predict and optimize the performance of fan and fan-shroud assembly. However, these CFD based optimization are mostly based on a single performance parameter. In addition, the sequential choice of input parameters in such optimization exercise leads to a large number of CFD simulations that are required to optimize the performance over the complete range of design and operating envelope. As a result, the optimization is carried out over a limited range of design and operating envelope only.
X