Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Multi-Body Dynamic Simulation and Fatigue Analysis of the Unique Crank - train for a Creative Two-stoke Opposed Piston Diesel Engine

2016-10-17
2016-01-2332
For an innovative opposed-piston diesel engine (OPE) with two-stroke operation mode, it attracted even more attentions than ever in some developed countries all around the world, attributed to the unique advantages of higher power density that conducive to downsize IC engine, as well as the potential of further reducing fuel consumption for outstanding thermal efficiency. To achieve fast practical application and ensure the feasibility in concept design stage, the performance characteristic of OPE crankshaft system was investigated, and thus a theoretical analytic model of crankshaft system in an OP2S (Opposed-piston two stroke) engine was established. The effects of all structural design variables on averaged output torque of OPE crankshaft were analyzed, respectively. It was found that the initial crank angle difference between inner crank web and outer crank web was considered as a most critical contributor to boost the averaged torque output than other design variables.
Technical Paper

The Effect of Port Timing and Exhaust Back Pressure on Uniflow Scavenging for a High Power Density OPE Engine

2016-09-27
2016-01-8078
Currently the downsizing of IC Engine has become the mainstream to meet fuel economy and emission regulations. It is required that higher power output while with lighter weight that is actually a daunting challenge for a common four-stroke IC engine, because it needs lots of new technologies and high manufacturing cost. For recent years the two-stroke opposed piston engine has drawn much attention in many developed countries for fundamental advantages itself. Double firing frequency means the increased power density brings about smaller engine size and lighter weight. However, the low scavenge efficiency has been assumed the main disadvantage for a two-stroke engine for a long period, and adverse to combustion efficiency. The uniflow scavenging process was investigated by the transient CFD simulation for multiple Cases. The influence of port timing and exhaust back pressure on scavenging was analyzed for two different intake port layouts.
Technical Paper

The Investigation of Self-Balanced Property and Vibration on the Particular Crankshaft System for an Opposed Piston Engine

2016-06-15
2016-01-1768
For an in-line diesel engine with four cylinder operating in four-stroke mode, the second-order reciprocating inertia forces generally cannot be well balanced with direct approach. The unbalanced second-order inertia forces are the main reason to cause vibration and noise in a diesel engine within low frequency range. The more superior tone quality for modern diesel engine has been expected even for bus application all the time, and there are tougher requirements for truck noise in developed countries, i.e. in Europe and USA. In present research a unique crankshaft system configuration was proposed, which including opposed piston, inner and outer connecting rod, and crankshaft but running in two-stroke mode, to eliminate the second-order inertia force considerably rather than by adding an extra balance shaft mechanism.
Technical Paper

Transient Gas Exchange Simulation and Uniflow Scavenging Analysis for a Unique Opposed Piston Diesel Engine

2016-04-05
2016-01-1087
To achieve more stringent exhaust emission regulations will face more and more daunting challenges nowadays. It needs more new technologies to improve the IC engine performance but needing higher costs in order to meet Euro 6 and EPA standards in USA. Recently the opposed-piston engine (OPE) has been treated as the promising product to meet these new regulations but relatively lower costing. Although two-stroke OPE owning inherent thermal efficiency and power density advantages, the inefficient scavenge efficiency appears to become the main obstacle to enhance combustion efficiency whilst reducing exhaust gas emission. For the improvement of scavenge efficiency the transient gas exchange simulation was carried out for multiple Cases here, including two intake port configurations at various back pressures in exhaust system and two port timings.
Journal Article

The Investigation and Application of Variable Tumble Intake System on a GDI Engine

2014-10-13
2014-01-2885
The in-cylinder tumble intensity of GDI engine is crucial to combustion stability and thermal efficiency, required to be different for the different operation conditions. A new variable tumble system (VTS) applied to GDI engine was introduced to meet tumble ratio requirements in various situations. The transient gas exchange of four combustion systems all were investigated during both intake and compression strokes based on CFD simulation, namely (1) Case 1-Intake port B (with flap valve)/Spherical piston crown; (2) Case 2-Intake port B (without flap valve)/Spherical piston crown; (3) Case 3- Intake port A/Spherical piston crown; (4) Case 4-Intake port A/Dented piston crown. The simulated results of dynamic tumble ratio showed that during the whole intake process the dynamic tumble ratio of Case1 was obviously higher than other Cases with the same boundary conditions, and the maximum value was about 5∼6 times higher.
X