Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

A Methodology for Formal Requirements Validation and Automatic Test Generation and Application to Aerospace Systems

2018-10-30
2018-01-1948
Automation on Validation and Verification (V&V) leveraging Formal Methods, and in particular Model Checking, is seeing an increasing use in the Aerospace domain. In recent years, Formal Methods have been used to verify systems and software and its correctness as a way to augment traditional methods relying on simulation and testing. Recent updates to the relevant Aerospace regulations (e.g. DO178C, DO331 and DO333) now have explicit provisions for utilization of models and formal methods. In a previous paper a compositional methodology for the verification of Aerospace Systems has been described with application to Electrical Power Generation and Distribution Systems. In this paper we present an expansion of the previous work in two directions. First, we describe the application of the methodology to the validation of Proximity Sensing Systems (PSS) requirements showing the effectiveness of the method to a new aerospace domain.
Technical Paper

A Lightweight Spatio-Temporally Partitioned Multicore Architecture for Concurrent Execution of Safety Critical Workloads

2016-09-20
2016-01-2067
Modern aircraft systems employ numerous processors to achieve system functionality. In particular, engine controls and power distribution subsystems rely heavily on software to provide safety-critical functionality, and are expected to move toward multicore architectures. The computing hardware-layer of avionic systems must be able to execute many concurrent workloads under tight deterministic execution guarantees to meet the safety standards. Single-chip multicores are attractive for safety-critical embedded systems due to their lightweight form factor. However, multicores aggressively share hardware resources, leading to interference that in turn creates non-deterministic execution for multiple concurrent workloads. We propose an approach to remove on-chip interference via a set of methods to spatio-temporally partition shared multicore resources.
Journal Article

A Methodology for Increasing the Efficiency and Coverage of Model Checking and its Application to Aerospace Systems

2016-09-20
2016-01-2053
Formal Methods, and in particular Model Checking, are seeing an increasing use in the Aerospace domain. In recent years, Formal Methods are now commonly used to verify systems and software and its correctness as a way to augment traditional methods relying on simulation and testing. Recent updates to the relevant Aerospace regulations (e.g. DO178C, DO331 and DO333) now have explicit provisions for utilization of models and formal methods. At the system level, Model Checking has seen more limited uses due to the complexity and abstractions needed. In this paper we propose several methods to increase the capability of applying Model Checking to complex Aerospace Systems. An aircraft electrical power system is used to highlight the methodology. Automated model-based methods such as Cone of Influence and Timer Abstractions are described. Results of those simplifications, in combination with traditional Assume-Guarantee approaches will be shown for the Electric Power System application.
X