Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Towards Integrative Simulation of Fatigue Loadings for Short Glass Fibers Reinforced Polyamide

2016-04-05
2016-01-0379
Short glass fiber reinforced polyamides (SFRPs) are a choice material for automotive industry, especially for in the engine compartment. To develop their application field to more and more complex hydrothermal and mechanical environments, reliable or even predictive simulation technologies are necessary. Integrative simulation takes into account the forming process during final Finite Elements Analysis (FEA). For SFRPs, injection molding is taken into account by computing glass fibers orientation. It is further used to compute a specific anisotropic constitutive model on each integration point of FEA model. A wide variety of models is now available. Integrative simulation using Digimat has been proved very efficient for static and dynamic loadings.
Technical Paper

The Post-Failure Behavior's Prediction of CFRP Parts under Dynamic Loads

2015-04-14
2015-01-0692
Most of the carmakers show a clear interest in the replacement of metal by continuous carbon fiber composites to reach their targets in terms of lightweighting while keeping or improving the global performances of each new vehicle. Thanks to its complex heterogeneous microstructure this material provides a better ratio mass/strength than metal for this purpose, especially for crash objectives. One of the challenge to fully integrate this advanced material into the next vehicles structures is to be able to accurately predict its post-failure behavior in order to define the best optimized design. An efficient behavior prediction for crash performances is reached when the simulation is able to capture the correct dissipated energy and the associated damage not only globally but also locally.
Technical Paper

Virtual Coupon Testing of Carbon Fiber Composites for Application in Structural Analysis

2014-04-01
2014-01-0809
In the steady quest for lightweighting solutions, continuous carbon fiber composites are becoming more approachable for design, now not only used in the aerospace but also the automotive industries. Carbon Fiber Reinforced Plastics (CFRP) are now being integrated into car body structures, used for their high stiffness and strength and low weight. The material properties of continuous carbon fiber composites are much more complex than metal, especially with respect to failure; this is further complicated by the fact that a single part is typically made from stacks of several unidirectional plies, each with a different fiber orientation. Hence failure occurs because of various mechanisms taking place at the ply level (matrix cracking, fiber breakage, fiber-matrix debonding) or between the plies (delamination). These mechanisms remain not fully understood and are investigated through experimental and virtual testing.
X