Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Dual Stage Front Underride Protection Devices (dsFUPDs): Collision Interface and Passenger Compartment Intrusion

2014-04-01
2014-01-0567
A performance investigation of Front Underride Protection Devices (FUPDs) with varying collision interface is presented by monitoring occupant compartment intrusion of Toyota Yaris and Ford Taurus FEA models in LS-DYNA. A newly proposed simplified dual-spring system is developed and validated for this investigation, offering improvements over previously employed fixed-rigid simplified test rigs. The results of three tested collision interface profiles were used to guide the development of two new underride protection devices. In addition, these devices were set to comply with Volvo VNL packaging limitations. Topology optimization is used to aid engineering intuition in establishing appropriate load support paths, while multi-objective optimization subject to simultaneous quasi-static loading ensures minimal mass and deformation of the FUPDs.
Technical Paper

Optimized Rigid Side Underride Protection Device Designs for Tractor-Trailers and Straight Trucks

2014-04-01
2014-01-0565
This work describes the design and testing of side underride protection devices (SUPD) for tractor-trailers and straight trucks. Its goal is to reduce the incompatibility between small passenger cars and these large vehicles during side collisions. The purpose of these crash attenuating guards is to minimize occupant injury and passenger compartment intrusion. The methods presented utilize a regulation previously created and published for testing the effectiveness of these devices based on the principles of a force application device already implemented in the Canadian rear underride guard regulation. Topology and multi-objective optimization design processes are outlined using a proposed design road map to create the most feasible SUPD. The test vehicle in question is a 2010 Toyota Yaris which represents the 1100C class of vehicle from the Manual for Assessing Safety Hardware (MASH).
Technical Paper

Development of a Modified Off-Road Rigid Ring Tire Model for Heavy Trucks

2014-04-01
2014-01-0878
The rigid-ring tire model is a simplified tire model that describes a tire's behaviour under known conditions through various in-plane and out-of-plane parameters. The complex structure of the tire model is simplified into a spring-mass-damper system and can have its behaviour parameterized using principles of mechanical vibrations. By designing non-linear simulations of the tire model in specific situations, these parameters can be determined. They include, but are not limited to, the cornering stiffness, vertical damping constants, self-aligning torque stiffness and relaxation length. In addition, off-road parameters can be determined using similar methods to parameterize the tire model's behaviour in soft soils. By using Finite Element Analysis (FEA) modeling methods, validated soil models are introduced to the simulations to find additional soft soil parameters.
X