Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

A Study on Force Distribution Control for the Electric Vehicle with Four In-wheel motors

2014-09-30
2014-01-2379
This paper presents an ideal force distribution control method for the electric vehicle, which is equipped with four independently in-wheel motors, in order to improve the lateral stability of the vehicle. According to the friction circle of tyre force, the ideal distribution control method can be obtained to make the front and rear wheels reach the adhesion limit at the same time in different conditions. Based on this, the force re-distributed control is applied to enhance the security of vehicle when the in-wheel motor is in the failure mode. The simulation result shows that: the force distributed method can not only improves the lateral stability of the vehicle but also enhances the vehicle safety.
Technical Paper

Optimized Torque Distribution Algorithm to Improve the Energy Efficiency of 4WD Electric Vehicle

2014-09-30
2014-01-2374
This paper presents a torque distribution algorithm to improve the energy efficiency of four-wheel-drive (4WD) electric vehicles with PMSM hub motors. In order to optimize the torque distribution method, at first the motor model considering the affect of iron loss and the loss model of multi-motors drive system of 4WD electric vehicle with PMSM hub motors, which operate at straight-line condition, are established. Besides, realize the online identification of motor parameters based on the MARS, which is important for updating the loss model parameters of the motor drive system. By doing this, the ideal torque distribution ratio can be obtained from the loss model in real-time. The simulation result using different distribution algorithms shows that the optimized torque distribution algorithm based on the loss model can be useful for improving the energy efficiency.
Technical Paper

Stability Control of Four-Wheel-Drive Electric Vehicle with Electro-Hydraulic Braking System

2014-09-28
2014-01-2539
Four-wheel-drive electric vehicles (4WD Evs) utilize in-wheel electric motors and Electro-Hydraulic Braking system (EHB). Then, all wheels torque can be controlled independently, and the braking pressure can be controlled more accurately and more fast than conventional braking system. Because of these advantages, 4WD Evs have potential applications in control engineering. In this paper, the in-wheel electric motors and EHB are applied as actuators in the vehicle stability control system. Based on the Direct Yaw-moment Control (DYC), the optimized wheel force distribution is given, and the coordination control of the hydraulic braking and the motor braking torque is considered. Then the EHB hardware-in-the-loop test bench is established in order to verify the effectiveness of the vehicle stability control algorithm through experiments.
Journal Article

An Accurate Modeling for Permanent Magnet Synchronous Wheel Motor Including Iron Loss

2014-04-01
2014-01-1867
For high torque permanent magnet wheel motor, this paper describes an experimental research method to optimize and identify the motor parameters based on the results of offline calculation. In order to improve the accuracy of motor parameters identification, the motor model considering the affect of iron loss was established, and the motor parameters were identified using genetic algorithm (GA). Based on this, parameters validation experiment was performed. The results show that: parameters obtained by this method can be used to describe the steady-state and transient-state response of permanent magnet synchronous motors accurately.
X