Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Experimental Study of Sliding Wear Behavior of the Casted Lead Bronze Journal Bearing Material

2019-04-02
2019-01-0824
Lead (Pb) bronze material is used for the manufacturing of bearings. Lead provides less friction and wear-related properties to bronze. During working of the bearings the lead contained micro-chips mixes with the lubricant oil and makes its disposal difficult. Rotational speed and applied load are the two main parameters on which the working and amount of wear from the bearing depend. So it is important to find out an optimum set of speed and pressure on which a particular bearing should operate to minimize the wear and hence minimize the lead-contaminated lubricating oil. In the present work, Taguchi technique has been used to find out the optimum values of speed and pressure. To measure the specific wear rate (SWR) and coefficient of friction (COF) of the leaded bronze material, it is made to slide on a mild steel material and amount of wear and coefficient of friction has been recorded using a pin on disc machine using ASTM-G99 standards.
Technical Paper

Study of Starting Friction during the Running of Plain Journal Bearing under Hydrodynamic Lubrication Regime

2018-04-03
2018-01-0838
Study of starting friction during the running of the engineering application has an important role in designing them, especially working at low speed and high load conditions. A significant portion of research and development today is concentrated on saving the energy by reducing the friction. The present paper addresses the measurement technique and analysis of the starting friction during the running of the journal bearing. The experiments were performed during the hydrodynamic lubrication regime using SAE 15W-30 lubricating oil. A journal bearing having journal diameter as 22 mm, length/diameter ratio 1 and 0.027 mm radial clearance has been designed and fabricated to test the starting friction. Analysis of starting friction and average friction torque during the running of journal bearing was done at 900, 1150, 1400, 1650, 1900, 2150 and 2400 revolution per minute (rpm) speed of the journal at load values of 250, 400 and 500 N.
Technical Paper

Enhancement in Performance and Emission Characteristics of Diesel Engine by Adding Alloy Nanoparticle

2016-10-17
2016-01-2249
Enhancement of combustion behavior of conventional liquid fuel using nanoscale materials of different properties is an imaginative and futuristic topic. This experiment is aimed to evaluate the performance and emission characteristics of a diesel engine when lade with nanoparticles of Cu-Zn alloy. The previous work reported the effect of metal/metal oxide or heterogeneous mixture of two or more particles; less work had been taken to analyze the homogeneous mixture of metals. This paper includes fuel properties such as density, kinematic viscosity, calorific value and performance measures like brake thermal efficiency (BTE), brake specific fuel consumption (BSFC) and emission analysis of NOX, CO, CO2, HC. For the same solid concentration, nano-fuel is compared with base fuel at different engine loads; and its effect when lade at different concentrations.
Technical Paper

Tribological Properties of Automotive Lubricant SAE 20W-40 Containing Nano-Al2O3 particles

2014-10-13
2014-01-2781
The need for advanced lubricants is increasing rapidly due to the current wide range of operational usage, i.e., high loads and speeds of motion between friction pairs, broader temperature range, and the overall requirements for increased reliability and service life of machinery. It is essentially important to develop specialized anti-friction and anti-wear materials that will help in preventing wear and decreasing friction, thereby saving fuel and electricity. Simultaneously, such materials are also expected to reduce vibration, noise and maintenance of machine parts. Thus, the research into extending the service life of such materials continues to be imperative. Nanoparticles (NPs) present a novel approach in this regard, as they can be used in lubricants in between two mating contact surfaces as a third body.
Technical Paper

Tribological Performance of Lubricating Oil Contaminated with Fine Dust Particles

2014-09-30
2014-01-2334
The economics of operating internal combustion engines in cars, buses and other automotive equipment is heavily affected by friction and wear losses caused by abrasive contaminants. As such, dust is a universal pollutant of lubricating oils. Road dust consists of depositions from vehicular and industrial exhausts, tire and brake wear, dust from paved roads or potholes, and from construction sites. Present research investigates the influence of dust powder of size 5 μm-100 μm as contaminant in SAE 20W-40 lubricant on the relative motion of a plane surface over the other having circular surface in contact. A pin-on-disk setup as per ASTM G99 has been used to conduct the experiments, firstly at increasing rpm keeping constant load of 118 N, and secondly by increasing loads, keeping rpm constant at 1000. The contaminated lubricant has been used to study its influence on friction and wear rate at the interface of pin of 12 mm diameter and disk at track diameter of 98 mm.
X