Refine Your Search

Search Results

Author:
Viewing 1 to 6 of 6
Technical Paper

Development of a Light-Duty Commercial Vehicle Demonstrator Featuring a Low-Cost PCB Fuel Cell

2022-03-29
2022-01-0696
Today the light-duty commercial market is dominated by internal combustion engine powered vehicles, primarily diesel-powered delivery vans, which contribute to urban air quality issues. Global concerns regarding climate change have prompted zero emission vehicles to be mandatory in many markets as soon as 2035. For the light-duty commercial vehicle sector there is significant interest in pure electric vehicles. However, for some markets, or usage cases, electric vehicles may not be the best solution due to practical limitations of battery energy storage capacity or recharging times. For such applications there is growing interest in hydrogen fuel cells as a zero emissions alternative. Bramble Energy’s patented printed circuit board (PCB) fuel cell technology (PCBFC™) enables the use of cost-effective production methods and materials from the PCB industry to reduce the cost and complexity of manufacturing hydrogen fuel cell stacks.
Journal Article

48 V High-power Battery Pack for Mild-Hybrid Electric Powertrains

2020-04-14
2020-01-0441
Mild hybridisation, using a 48 V system architecture, offers fuel consumption benefits approaching those achieved using high-voltage systems at a much lower cost. To maximise the benefits from a 48 V mild-hybrid system, it is desirable to recuperate during deceleration events at as high a power level as possible, whilst at the same time having a relatively compact and low cost system. This paper examines the particular requirements of the battery pack for such a mild-hybrid application and discusses the trade-offs between battery power capabilities and possible fuel consumption benefits. The technical challenges and solutions to design a 48 V mild-hybrid battery pack are presented with special attention to cell selection and the thermal management of the whole pack. The resulting battery has been designed to achieve a continuous-power capability of more than 10 kW and a peak-power rating of up to 20 kW.
Journal Article

Heavily Downsized Gasoline Demonstrator

2016-04-05
2016-01-0663
Gasoline engine downsizing is already established as a proven technology to reduce automotive fleet CO2 emissions by as much as 25 %. Further benefits are possible through more aggressive downsizing, however, the trade-off between the CO2 reduction achieved and vehicle drive-ability limits the level of engine downsizing currently adopted. This paper presents results showing the benefits of adding an eSupercharger to a very heavily downsized engine. Measurements are presented from a 1.2 litre, 3-cylinder, engine fitted with an eSupercharger in addition to a conventional turbocharger. The original MAHLE downsizing engine has been re-configured to enable a specific power output that exceeds 160 kW/litre. Of key importance is a cost effective, efficient and flexible boosting system.
Technical Paper

Through-the-Road Parallel Hybrid with In-Wheel Motors

2016-04-05
2016-01-1160
Present automobile development is keenly focused on measures to reduce the CO2 output of vehicles. Plug-in hybrid electric vehicles (PHEVs) enable grid electricity, which is clean in tail-pipe emissions terms, to be utilised whilst the on-board electrical storage has sufficient charge. MAHLE Powertrain and Protean have jointly developed a plug-in hybrid demonstrator vehicle based on a C-segment passenger car. The vehicle features Protean’s compact direct drive in-wheel motors with integrated inverters on the rear axle and retains the standard gasoline engine, and manual transmission, on the front axle. To support this one-off prototype, a flexible vehicle control unit has been developed, which is easily re-configurable and adaptable to any hybrid vehicle architecture.
Technical Paper

GPS Based Energy Management Control for Plug-in Hybrid Vehicles

2015-04-14
2015-01-1226
In 2012 MAHLE Powertrain developed a range-extended electric vehicle (REEV) demonstrator, based on a series hybrid configuration, and uses a battery to store electrical energy from the grid. Once the battery state of charge (SOC) is depleted a gasoline engine (range extender) is activated to provide the energy required to propel the vehicle. As part of the continuing development of this vehicle, MAHLE Powertrain has developed control software which can intelligently manage the use of the battery energy through the combined use of GPS and road topographical data. Advanced knowledge of the route prior to the start of a journey enables the software to calculate the SOC throughout the journey and pre-determine the optimum operating strategy for the range extender to enable best charging efficiency and minimize NVH. The software can also operate without a pre-determined route being selected.
Technical Paper

The Development of a Flexible Hybrid Vehicle Control Unit

2014-04-01
2014-01-1907
MAHLE Powertrain have developed a plug-in hybrid demonstrator vehicle. To support this one-off prototype, a flexible control unit has been developed, which is easily re-configurable and adaptable to any vehicle architecture. The unit operates using software developed in-house to achieve a fully configurable vehicle control unit (VCU), intended to provide a rapid and cost effective platform for the development of demonstrator and small validation prototype vehicle fleets. The executable code is auto-generated from graphical Simulink / TargetLink models, which greatly reduces development time and risk of errors. The graphical source code also provides comprehensive documentation for users of the system. This paper describes the resulting vehicle control unit and gives details of the application of the unit within the plug-in hybrid demonstrator vehicle.
X