Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Evaluating the Severity of Safety Envelope Violations in the Proposed Operational Safety Assessment (OSA) Methodology for Automated Vehicles

2022-03-29
2022-01-0819
As the automated vehicle (AV) industry continues to progress, it is important to establish the level of operational safety of these vehicles prior to and throughout their deployment on public roads. The Institute of Automated Mobility (IAM) has previously proposed a set of operational safety assessment (OSA) metrics which can be used to quantify the operational safety of vehicles. The OSA metrics provide a starting point to consistently quantify performance, but a framework to interpret the metrics measurements is needed to objectively quantify the overall operational safety for a vehicle in a given scenario. This work aims to present an approach to applying a calculation of the safety envelope component of the OSA metrics to rear-world collisions for use in such an assessment. In this paper, the OSA methodology concept is introduced as a means for quantifying the operational safety of a vehicle.
Technical Paper

Sensitivity of Automated Vehicle Operational Safety Assessment (OSA) Metrics to Measurement and Parameter Uncertainty

2022-03-29
2022-01-0815
As the deployment of automated vehicles (AVs) on public roadways expands, there is growing interest in establishing metrics that can be used to evaluate vehicle operational safety. The set of Operational Safety Assessment (OSA) metrics, that include several safety envelope-type metrics, previously proposed by the Institute of Automated Mobility (IAM) are a step towards this goal. The safety envelope OSA metrics can be computed using kinematics derived from video data captured by infrastructure-based cameras and thus do not require on-board sensor data or vehicle-to-infrastructure (V2I) connectivity, though either of the latter data sources could enhance kinematic data accuracy. However, the calculation of some metrics includes certain vehicle-specific parameters that must be assumed or estimated if they are not known a priori or communicated directly by the vehicle.
Book

Fundamentals of Connected and Automated Vehicles

2022-01-20
The automotive industry is transforming to a greater degree that has occurred since Henry Ford introduced mass production of the automobile with the Model T in 1913. Advances in computing, data processing, and artificial intelligence (deep learning in particular) are driving the development of new levels of automation that will impact all aspects of our lives including our vehicles. What are Connected and Automated Vehicles (CAVs)? What are the underlying technologies that need to mature and converge for them to be widely deployed? Fundamentals of Connected and Automated Vehicles is written to answer these questions, educating the reader with the information required to make informed predictions of how and when CAVs will impact their lives.
Technical Paper

Quantifying the Effect of Initialization Errors for Enabling Accurate Online Drivetrain Simulations

2019-04-02
2019-01-0347
Simulations conducted on-board in a vehicle control module can offer valuable information to control strategies. Continued improvements to on-board computing hardware make online simulations of complex dynamic systems such as drivetrains within reach. This capability enables predictions of the system response to various control actions and disturbances. Implementation of online simulations requires model initialization that is consistent with the physical drivetrain state. However, sensor signals and estimated variables are susceptible to errors, compromising the accuracy of the initialization and any future state predictions as the simulation proceeds through the numerical integration process. This paper describes a drivetrain modeling and analysis method that accounts for initialization errors, thereby enabling accurate simulations of system behaviors.
Journal Article

Accuracy and Robustness of Parallel Vehicle Mass and Road Grade Estimation

2017-03-28
2017-01-1586
A variety of vehicle controls, from active safety systems to power management algorithms, can greatly benefit from accurate, reliable, and robust real-time estimates of vehicle mass and road grade. This paper develops a parallel mass and grade (PMG) estimation scheme and presents the results of a study investigating its accuracy and robustness in the presence of various noise factors. An estimate of road grade is calculated by comparing the acceleration as measured by an on-board longitudinal accelerometer with that obtained by differentiation of the undriven wheel speeds. Mass is independently estimated by means of a longitudinal dynamics model and a recursive least squares (RLS) algorithm using the longitudinal accelerometer to isolate grade effects. To account for the influences of acceleration-induced vehicle pitching on PMG estimation accuracy, a correction factor is developed from controlled tests under a wide range of throttle levels.
Journal Article

Methods in Vehicle Mass and Road Grade Estimation

2014-04-01
2014-01-0111
Dynamic vehicle loads play critical roles for automotive controls including battery management, transmission shift scheduling, distance-to-empty predictions, and various active safety systems. Accurate real-time estimation of vehicle loads such as those due to vehicle mass and road grade can thus improve safety, efficiency, and performance. While several estimation methods have been proposed in literature, none have seen widespread adoption in current vehicle technologies despite their potential to significantly improve automotive controls. To understand and bridge the gap between research development and wider adoption of real-time load estimation, this paper assesses the accuracy and performance of four estimation methods that predict vehicle mass and/or road grade.
X