Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Journal Article

Evaluation and Prediction of Deposit Severity in SCR Systems

2016-04-05
2016-01-0970
In this work we extended the findings from a previous study by the authors on the mechanisms and influence factors of deposit formation in urea-based selective catalytic reduction systems (SCR) [1]. A broader range of operating conditions was investigated in detail. In order to quantify the boundary conditions of deposition, a representative set of deposits was studied during formation and decomposition. A box of heat resisting glass was equipped with a surrogate mixing element to monitor solidification timescales, temperatures and deposit growth. A chemical analysis of the deposits was performed using thermogravimetry. The depletion timescales of individual deposit components were systematically investigated. A moderate temperature increase to 350 °C was deemed sufficient to trigger fast decomposition of deposits formed below 250 °C.
Technical Paper

Advanced Spray Impingement Modelling for an Improved Prediction Accuracy of the Ammonia Homogenisation in SCR Systems

2015-04-14
2015-01-1054
A fast preparation of the liquid urea water solution (UWS) is necessary to ensure high conversion rates in exhaust aftertreatment systems based on Selective Catalytic Reduction (SCR). Droplet wall interaction is of major importance during this process, in particular droplet breakup and the Leidenfrost effect. A deeper understanding of the underlying mechanisms is a basic requirement to calibrate CFD models in order to improve their prediction accuracy. This paper presents a detailed literature study and discussion about the major impact factors on droplet wall interaction. Measurements of the Leidenfrost temperature were conducted and the corresponding regimes classified based on optical observations. The pre- and post-impingement spray was analysed using the laser diffraction method. Further, the validity of spray initialisation based on measurements at room temperature was verified.
Technical Paper

Advanced SCR Flow Modeling with a Validated Large Eddy Simulation

2015-04-14
2015-01-1046
One promising application in the emission control is the Selective Catalytic Reduction (SCR) system for the reduction of nitric oxides from exhaust emissions. Previous works at the institute have highlighted the importance of accurate CFD turbulence modeling with respect to the turbulent mixing of ammonia vapor [1]. With the help of Laser Doppler Anemometry (LDA) measurements it was confirmed that RANS approaches are capable of predicting the velocity field adequately. In contrast, the turbulence level was underestimated for all RANS approaches [2]. Based on this work the paper at hand presents CFD results using Large Eddy Simulation (LES). The sensitivity of the solution with respect to spatial and temporal resolution as well as the boundary conditions is demonstrated. In accordance with the Kolmogorov theory grid sizes ranging from 3.2 to 20 million cells were investigated using LES methodology.
Journal Article

Optical and Numerical Investigations on the Mechanisms of Deposit Formation in SCR Systems

2014-04-01
2014-01-1563
Long-term reliability is one of the major requirements for the operation of automotive exhaust aftertreatment systems based on selective catalytic reduction (SCR). For an efficient reduction of nitrogen oxides in the SCR catalyst it is desirable that the thermolysis of the injected urea water solution (UWS) is completed within the mixing section of the exhaust system. Urea might undergo a number of secondary reactions leading to the formation of solid deposits on system walls. A deeper understanding of the mechanisms and influence factors is a basic requirement to prevent and predict undesired decomposition products. This paper outlines the mechanisms of UWS transport and deposition on a typical mixing element geometry. The conditions leading to deposit formation were investigated based on optical and temperature measurements in a box with optical access. A good correlation with the deposit location observed at the close-to-series exhaust system was found.
X