Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Effect of Ageing Catalyzed Continuously Regenerating Trap on Particulate Emissions from Urban Diesel Bus Based on On-road Test

2014-10-13
2014-01-2802
Durability and performance evaluation of the ageing catalyzed continuously regenerating trap (CCRT) on solid and volatile particles from diesel bus were studied through a set of transient TSI engine exhaust particle sizer spectrometer based on on-road test. Particle characteristics under stepped steady conditions and during regeneration were discussed in detail. Under idle and stepped steady conditions, total particle number and mass Emission Rate (ER) of each test presented rising trends as speed increase. Total number ERs of all tests showed downtrend as the CCRT aging. The particle number size distributions at different ageing stage showed changing characteristics due to developing filter mechanism. Compared with baseline data, the total number reduction rates at idle condition were incremental, from 91.4% to 98.9% as the CCRT ageing. Percentages of nuclei mode concentrations took higher range from 66.6% to 89.9% compared with the baseline data, 43.2-43.7%.
Technical Paper

Particle-Bound PAHs Emission from a Heavy Duty Diesel Engine with Biodiesel Fuel

2013-10-14
2013-01-2573
Regulated gaseous and particulate matter (PM) emissions in the exhaust from a heavy duty diesel engine with biodiesel fuel were studied, and the emission characteristics of PM and polycyclic aromatic hydrocarbons (PAHs) emissions in PM were highlighted. In the experiment, pure diesel fuel and B10 (a blend of diesel and biodiesel fuels with the volume ratio of 9 to 1) fuel were chosen. The study shows that, compared to the pure diesel, the emissions of PM, soluble organic fractions (SOF) and PAHs from the heavy duty diesel engine decrease when the engine burns B10 fuel, and the nitrogen oxides (NOx) emission slightly increases, while the unburned hydrocarbon (HC) and carbon monoxide (CO) emissions also decline. Among the detected 12 kinds of PAHs, emission concentrations of 10 kinds of PAHs from the engine with B10 descend. Especially Benzo(a)pyrene equivalent toxicity (BEQ) analysis results show that the BEQ of B10 fuel decreases by 15.2% compared to pure diesel.
Technical Paper

Laboratory Investigation on Emission Characteristics of a Diesel Car Fuelled with Biodiesel Blends

2012-04-16
2012-01-1063
Based on pure diesel, pure biodiesel, and two biodiesel blends at volumetric mixture ratio of 10% and 20%, NEDC emission tests were carried out on a Euro 3-compliant diesel car. Results showed that pure biodiesel and biodiesel blends had decreasing effects on CO and HC emissions under warm-up situations, but deteriorations of CO and HC emissions were observed under cold start-up and low vehicle speed operating conditions, and this caused increasing results of CO and HC emission factors in NEDC tests when substituting pure diesel with both of pure biodiesel and biodiesel blend of 20%. Pure biodiesel aroused an increase in NOX emissions compared with pure diesel, but the two low mixture ratio biodiesel blends were observed in different increasing effects and even decreasing effects on NOX emissions. Only pure biodiesel had limited increasing effects on CO₂ emissions.
Technical Paper

Experimental Investigation on Particle Number and Size Distribution of a Common Rail Diesel Engine Fueling with Alternative Blended Diesel Fuels

2011-04-12
2011-01-0620
An EURO 3 certified common rail diesel engine was fueled with pure petroleum diesel (EURO 4 standard) and three different alternative blended diesel fuels, 10% biodiesel blended diesel (B10), 10% gas to liquid blended diesel (G10) and 10% water emulsified diesel (E10). Tests were performed at different engine speeds and load states. Particle number concentration and size distribution data were obtained from an engine exhaust particle sizer (EEPS). Over all the working conditions, total particle and nucleation mode particle number concentration among these fuels from high to low were in this order: B10, E10, pure diesel and G10. Proportions for nucleation mode particle over all the operating states in that order were 89%, 82%, 59% and 66%. Particle size distributions of B10 and E10 presented bimodal logarithmic distributions with outstanding nucleation mode peaks at all working conditions.
Technical Paper

A Composition-Based Model for Particulate Matter Emission of Direct Injection Diesel Engines

2005-09-07
2005-01-3463
In this study, a composition-based particulate matter (PM) model of direct injection diesel engines has been formulated and developed to simulate PM emission. The PM model is based on formation mechanisms of main compositions of PM: soot and soluble organic fraction (SOF). Firstly, two models for soot and SOF emissions are established respectively, then, the two models are integrated into a whole PM model. The soot emission model is given by the difference between a primary formation model and an oxidation model of soot. The soot primary formation model is the Hiroyasu soot formation model, and the Nagle and Strickland-Constable model for the soot oxidation is adopted. The SOF emission model is based on an unburned hydrocarbons (HC) emission model, and the HC model is given by the difference between a HC primary formation model and a HC oxidation model.
X