Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

Multibody Dynamics Analysis of Tandem Axle Rubber Suspension Using MSC ADAMS

2021-10-01
2021-28-0201
Tipper application has always been associated with rough roads and very high payload. This makes suspension design the most complex job as it has to cater for needs ranging from good ride at no load condition to stability of vehicle at fully loaded condition. Bogie suspension being most commonly used brings in maintenance and breakdown issues which is not desirable by the fleet owners, due to the cost and downtime associated with it. Rubber suspension has been looked upon as options due to its ability to not only provide good ride and stability but also to be almost maintenance free. Tandem axle walking beam rubber suspension is thus suitable for tipper application and has started to make its space in Indian market. Suspension design and development includes costly processes in terms of testing. FEA being the most common tool used for component design, requires inputs like forces acting on each component in various directions which is quite complex to predict.
Technical Paper

Development of Full Car Model for Ride Analysis of Light Duty Bus using MATLAB Simulink

2021-09-22
2021-26-0088
Ride is considered to be one of the crucial criterion for evaluating the performance of a vehicle. Automobile industry is striving for improvement in designs to provide superior passenger comfort in Commercial vehicles segment. In Industry, Quarter-car model has been used for years to study the vehicle’s ride dynamics. But due to lower DOF involved in quarter car, the output accuracy is somewhat compromised. This paper aims in development of a 7 DOF full-car Model to perform the ride- comfort analysis for Light Duty 4*2 Commercial Bus using MATLAB Simulink which can be used to tune the suspension design to meet the required ride-comfort criteria. Firstly, experimental data and Physical Parameters are collected by performing Practical Test on commercial Bus on different road profiles. Secondly, a Full Car Mathematical Model with 7 DOF has been developed for a bus using MATLAB Simulink R2018a.
Technical Paper

Concept Design and Analysis of Mini E-Tractor

2020-09-25
2020-28-0517
This paper deals with the concept design of a mini tractor which is suitable for mild ploughing operations with 5 kW electric motor. The low cost battery driven mini tractor operates on a lead acid batteries. The design principles and calculations of electric tractor powertrain are studied and delineated in details. By using these calculations, parameters of the major powertrain components like drive motor, battery and transmission are obtained. The powertrain model of an electric tractor is modelled with MATLAB/Simulink to estimate the traction and battery performance. The CAD model of tractor is prepared in Solidworks and CAE analysis of chassis is performed using ANSYS Workbench to ensure safety and reliability. Calculations are performed for tractor subsystems such as steering system and braking system. The analysis results confer the design as safe and satisfactory in terms of performance.
Technical Paper

Impact of Wheel-Housing on Aerodynamic Drag and Effect on Energy Consumption on an Electric Bus Body

2019-11-21
2019-28-2394
Role of wheel and underbody aerodynamics of vehicle in the formation of drag forces is detrimental to the fuel (energy) consumption during the course of operation at high velocities. This paper deals with the CFD simulation of the flow around the wheels of a bus with different wheel housing arrangements. Based on benchmarking, a model of a bus is selected and analysis is performed. The aerodynamic drag coefficient is obtained and turbulence around wheels is observed using ANSYS Fluent CFD simulation for different combinations of wheel-housing- at the front wheels, at the rear wheels and both in the front and rear wheels. The drag force is recorded and corresponding influence on energy consumption of a bus is evaluated mathematically. A comparison is drawn between energy consumption of bus body without wheel housing and bus body with wheel housing. The result shows a significant reduction in drag coefficient and fuel consumption.
Technical Paper

Aerodynamic Analysis of Electric Passenger Car Using Wind Turbine Concept at Front End

2019-11-21
2019-28-2396
Electric passenger car with floor battery usually have its front boot space empty and the space is used as additional luggage storage. This space can be utilized to capture the wind energy and generate electricity. Based on this, the objective of this work is to perform an aerodynamic analysis of an electric passenger car using wind turbine placed at the front. Initially the aerodynamic analysis of a basic electric car model is performed and further simulated using wind turbines and aerodynamic add-on-devices. The simulation is carried-out using ANSYS Fluent tool. Based on the simulation result, scaled down optimized model is fabricated and tested in wind tunnel for validation. The result shows reduction of drag coefficient by 5.9%.
Technical Paper

Spring and Damper Tuning of an ATV to Reduce Transmissibility

2019-11-21
2019-28-2401
The application in vehicle ride and handling has been mostly subjective or intuitive. There are several methods to improve vehicle stability and handling. One of the methods is suspension tuning. The objective of this work is to perform dynamical analysis of suspension by spring and damper tuning to reduce transmissibility for an all-terrain vehicle. A baseline spring rate data is used for tuning to provide better ride. The Fox air shock absorbers with progressive damping are used for testing. First the dynamics simulation is carried out by using ADAMS CAR tool. A detailed characteristic of the air shocks is obtained at various loading conditions by experimentation using test rig. Based on it, the simulation has been carried out for desired tuning parameters of spring and damper to improve stability.
Technical Paper

Aerodynamic Analysis of a Passenger Car to Reduce Drag Using Active Grill Shutter and Active Air Dam

2019-11-21
2019-28-2408
Active aerodynamics can be defined as the concept of reducing drag by making real-time changes to certain devices such that it modifies the airflow around a vehicle. Using such devices also have the added advantages of improving ergonomics and performance along with aesthetics. A significant reduction in fuel consumption can also be seen when using such devices. The objective of this work is to reduce drag acting on a passenger car using the concept of active aerodynamics with grill shutters and air dams. First, analysis has been carried out on a baseline passenger car and further simulated using active grill shutters and air dams for vehicle speed ranging from 60 kmph to 120 kmph, with each active device open from 0° to 90°. The optimized model is then validated for a scaled down prototype in a wind tunnel at 80kmph. Vehicle has been modelled using SolidWorks tool and the simulation has been carried out using ANSYS Fluent.
Technical Paper

Ride-Comfort Analysis for Commercial Truck Using MATLAB Simulink

2019-11-21
2019-28-2428
Ride Comfort forms a core design aspect for suspension and is to be considered as primary requirement for vehicle performance in terms of drivability and uptime of passenger. Maintaining a balance between ride comfort and handling poses a major challenge to finalize the suspension specifications. The objective of this project it to perform ride- comfort analysis for a commercial truck using MATLAB Simulink. First, benchmarking was carried out on a 4x2 commercial truck and the physical parameters were obtained. Further, a mathematical model is developed using MATLAB Simulink R2015a and acceleration- time data is collected. An experimentation was carried out on the truck at speeds of 20 kmph, 30 kmph, 40 kmph and 50 kmph over a single hump to obtain actual acceleration time domain data. The model is then correlated with actual test over a single hump. This is followed by running the vehicle on Class A, B & C road profiles to account for random vibrations.
Technical Paper

Aerodynamic Analysis of Race Car Using Active Wing Concept

2019-11-21
2019-28-2395
In high speed race cars, aerodynamics is an important aspect for determining performance and stability of vehicle. It is mainly influenced by front and rear wings. Active aerodynamics consist of any type of movable wing element that change their position based on operating conditions of the vehicle to have better performance and handling. In this work, front and rear wings are designed for race car prototype of race car. The high down force aerofoil profiles have been used for design of front and rear wing. The first aerodynamic analysis has been performed on baseline model without wings using CFD tool. For investigation, parameters considered are angle of attack in the range of 0-18° for front as well as rear wing at different test speeds of 60, 80, 100 and 120 kmph. The simulation is carried out by using ANSYS Fluent. The simulation results show significant improvement in vehicle performance and handling parameters.
Technical Paper

Design and Optimization of Crash-Box of Passenger Vehicle to Enhance Energy Absorption

2019-03-25
2019-01-1435
Frontal crash is the most common type of accidents in passenger vehicles which results in severe injuries or fatalities. During frontal crash, some frontal vehicle body has plastic deformation and absorbs impact energy. Hence vehicle crashworthiness is important consideration for safety aspect. The crash box is one of the most important parts in vehicle frontal structure assembly which absorb crash energy during impact. In case of frontal crash accident, crash box is expected to be collapsed by absorbing crash energy prior to the other parts so that the damage to the main cabin frame and occupant injury can be minimized. The main objective of this work is to design and optimize the crash box of passenger vehicle to enhance energy absorption. The modeling of the crash box is done in CATIA V5 and simulations are carried out by using ANSYS. The results show significant improvement in the energy absorption with new design of the crash box and it is validated experimentally on UTM.
Technical Paper

Aerodynamic Analysis of Passenger Car with Luggage Carrier (Roof Rack)

2019-01-09
2019-26-0067
Any change is vehicle exterior design, affects the aerodynamics characteristic. Generally different types of roof racks are attached on passenger vehicles to carry luggage which affects aerodynamic drag. The objective of this work is to perform aerodynamic analysis of ground vehicle with roof rack to investigate the change in drag coefficient. First, the aerodynamic analysis of a baseline passenger car model is performed with and without generic benchmarked roof rack at 100 kmph. Further analysis is carried out with different new designs of roof racks. Based on simulation result, a scaled down prototype model is fabricated and validated by using a wind tunnel test for optimum suitable case. The modelling of the vehicle is done in CATIA tool and simulation is carried out by using ANSYS Fluent.
Technical Paper

Modeling and Simulation of Steady State Handling Characteristics of Formula Vehicle with Antiroll Bars

2019-01-09
2019-26-0068
Antiroll bar plays an important role in rollover stability of the vehicle. But not only does it limit the vehicle roll during cornering, but also alters the lateral load transfer between the tracks, which in turn affects the cornering performance of the vehicle. This paper deals with the design and mathematical modeling of antiroll bars to reduce the body roll of the vehicle from 1.5°/g to less than 1.0°/g. Rear bar uses a conventional torsion type bar but the front anti roll mechanism is an unconventional antiroll bar using a rotating double cantilever mechanism. Mathematical modeling is done for pushrod rod actuated antiroll mechanisms to simulate its non-linear roll rates. Antiroll bars for front and rear are designed for the calculated stiffness. Finite Element Analysis of antiroll bar and its components is done and the mechanism is tested on the vehicle. Steady state tire model parameters are generated by curve fitting tire testing data into pacejka coefficients.
Technical Paper

Design and Development of Tunable Exhaust Muffler for Race Car

2016-02-01
2016-28-0193
The Exhaust Noise is one of the major noise pollutants. It is well-known that for higher noise reduction, the engine has to bear high back pressure. For a race car, back-pressure plays a major role in engine's performance characteristics. For a given condition of engine rpm & load, conventional muffler has a fixed value of back-pressure and noise attenuation. Better acceleration requires low back-pressure, but the exhaust noise should also be less than the required (Norm) value (110 dBA). This contradicting condition is achieved here by using a ‘Butterfly Valve’ in this novel exhaust muffler. The butterfly valve assumes 2 positions i.e. fully open & fully closed. When the valve is fully closed, the noise reduction will be higher, but the back-pressure will also shoot up. When open, noise reduction will be less and so the back-pressure. So, when better performance is required, the valve is opened and back-pressure is reduced. The muffler is designed for a 4 cylinder 600 cc engine.
Technical Paper

Implementation of Karakuri Kaizen in Material Handling Unit

2015-01-14
2015-26-0074
Material handling is a major section in all the industries especially for delicate and huge components. Here in this industry they are using pneumatics system to tilt the component for certain angle so that operator will be able to do the further operation in the line. Pneumatic system needs compressed air for running the system, which in turn requires electricity to compress the air using an air compressor. Due to frequent power shutdowns many industries are facing problem to run their manufacturing unit peacefully. As an alternate they are using generators which require fuel to generate power. This adds excess cost for manufacturing the products and demand for fuel is also increasing day by day. So to avoid all this problem with a one step solution, dependability of energy resources has to be minimized. For avoiding the usage of energy resources the usage of pneumatics and compressed air has to be reduced.
Technical Paper

Design & Validation of a High Speed Car With Respect to Aerodynamics & Body Styling

2013-11-27
2013-01-2824
An open wheeled open cockpit high speed car with 800 CC MPFI engine was developed validated and run at 105 kmph. The key focus was to build a car with superior aerodynamic characteristics especially in terms of drag. This work discusses in detail about the design and simulation of car using CFD package followed by Wind Tunnel testing. The design of high speed car starts with design of seat according to the ergonomics of the driver followed by the space frame. Based on the space frame designed, the body panels are sketched and CAD model is developed. The CAD model is imported in CFD package for virtual testing and validated through wind tunnel results. For this 1:3 scale model was manufactured using Rapid Prototyping.
X