Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Full-Scale Validation of Modified Pedestrian Dummy

2023-04-11
2023-01-0786
Injury assessment by using a whole-body pedestrian dummy is one of the ways to investigate pedestrian safety performance of vehicles. The authors’ group has improved the biofidelity of the lower limb and the pelvis of the mid-sized male pedestrian dummy (POLAR III) by modifying those components. This study aims to evaluate the biofidelity of the whole-body response of the modified dummy in full-scale impact tests. The pelvis, the thigh and the leg of POLAR III have been modified in a past study by optimizing their compliance by means of the installation of plastic and rubber parts, which were used for the tests. The generic buck developed for the assessment of pedestrian dummy whole-body impact response and specified in SAE J3093 was used for this study. The buck representing the geometry of a small family car is comprised of six parts: lower bumper, bumper, grille, hood edge, hood and windshield.
Technical Paper

Modification of the Lower Limb and the Pelvis for the Pedestrian Dummy

2022-03-29
2022-01-0851
In order to further reduce the pedestrian fatalities, the improvement of pedestrian safety performance of vehicles is needed. One of the way to further understand read-world pedestrian accidents is the evaluation by using a whole-body pedestrian dummy. In the past studies, the leg, the thigh and the pelvis of the pedestrian dummy were developed and improved. However, the requirements for the biofidelity of the pedestrian dummy have been improved in SAE J2782. Therefore, this study aimed to evaluate these responses of the past studies by using new requirements and to modify these parts that didn’t meet them. The force-defection curves from 3-point lateral bending tests for the leg and the thigh were compared with the corridors updated in SAE J2782. The biofidelity of the pelvis was evaluated in dynamic lateral compression tests of the isolated pelvis. The sacrum and the pubis force-deflection curves of the iliac or the acetabulum impact were compared with the corridors.
Technical Paper

Improvement and Validation of the Lower Limb and the Pelvis for a Pedestrian Dummy

2015-04-14
2015-01-1471
The evaluation of pedestrian safety performance of vehicles required by regulations and new car assessment programs (NCAPs) have been conducted. However, the behavior of a pedestrian in an actual car-pedestrian accident is complex. In order to investigate injuries to the pedestrian lower body, the biofidelity of the lower limb and the pelvis of a pedestrian dummy called the POLAR II had been improved in past studies to develop a prototype of the next generation dummy called the POLAR III. The biofidelity of the thigh and the leg of the POLAR III prototype has been evaluated by means of 3-point bending. However, the inertial properties of these parts still needed to be adjusted to match those of a human. The biofidelity of the pelvis of the POLAR III prototype has been evaluated in lateral compression. Although the experiment using PMHSs (Post Mortem Human Subjects) was conducted in dynamic condition, the dummy tests were performed only in quasi-static condition.
Technical Paper

Investigation of a Simplified Vehicle Model that Can Reproduce Car-Pedestrian Collisions

2014-04-01
2014-01-0514
Japanese accident statistics show that despite the decreasing trend of the overall traffic fatalities, more than 1,000 pedestrians are still killed annually in Japan. One way to develop further understanding of real-world pedestrian accidents is to reconstruct a variety of accident scenarios dynamically using computational models. Some of the past studies done by the authors' group have used a simplified vehicle model to investigate pedestrian lower limb injuries. However, loadings to the upper body also need to be reproduced to predict damage to the full body of a pedestrian. As a step toward this goal, this study aimed to develop a simplified vehicle model capable of reproducing pedestrian full-body kinematics and pelvis and lower limb injury measures. The simplified vehicle model was comprised of four parts: windshield, hood, bumper and lower part of the bumper. Several different models were developed using different combinations of geometric and stiffness representation.
X